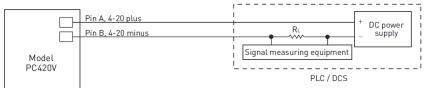
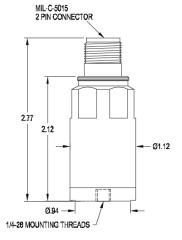
RMS and peak velocity loop powered sensors (LPS™)


PC420V series


Wilcoxon's PC420V series provides continuous of overall machine vibration, alerting users to changing machine conditions and helping to guide maintenance in prioritizing the need for service. The choice of RMS or peak output allows you to choose the sensor that best fits your industrial requirements.

The 4-20 mA output of the PC420V series is proportional to velocity vibration. An output of 4 mA indicates a level of 0 ips or no vibration present. A full-scale reading of 20 mA indicates that the maximum range (RMS or peak) of vibration is present.

Typical circuit

Connections		
Function	Connector pin	
ground	shell	
loop positive (+)	A	
loop negative (–)	В	

Key features

- True RMS or calculated peak output
- Corrosion resistant
- Hermetic seal
- ESD protection
- Overload protection
- Reverse wiring protection

Certifications

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

Wilcoxon Sensing Technologies 20511 Seneca Meadows Parkway Germantown, MD 20876 info@wilcoxon.com

Tel: (301) 330 8811 Fax: (301) 330 8873 www.wilcoxon.com

Wilcoxon Sensing Technologies
An Amphenol Company

RMS and peak velocity loop powered sensors (LPS™)

PC420V series

SPECIFICATIONS

OUTPUT, 4-20 mA			
Full scale, 20 mA, ±5%		see table 1 below	
Frequency response:	± 10% ± 3 dB	10 Hz - 1.0 kHz 3.5 Hz - 2.0 kHz	
Repeatability		± 2%	
Transverse sensitivity, max		5%	
Power requirements (two-wire loop power): Voltage at sensor terminals		12 - 30 VDC	
Loop resistance at 24 VDC, n	nax	700 Ω	
Turn on time, 4-20 mA loop		30 seconds	
Grounding		case isolated, internally shielded	
Operating temperature range	,1	–40 to +105° C	
/ibration limit		250 g peak	
hock limit		2,500 g peak	
Sealing		hermetic	
Sensing element design		PZT, shear	
Veight		160 grams	
Case material		stainless steel	
l lounting		1/4-28 tapped hole	
Output connector		2-pin, MIL-C-5015 style	
lating connector		R6 type	
Recommended cabling		J9T2A	

Contact

Wilcoxon Sensing Technologies

20511 Seneca Meadows Parkway Germantown MD 20876, USA

Tel: +1 301 330 8811 Fax: +1 301 330 8873

info@wilcoxon.com

www.wilcoxon.com

Table 1: PC420Vx-yy model selection

x (4-20 mA output type)	yy (4-20 mA full scale)
R = RMS output, velocity	05 = 0.5 ips
P = Calculated peak output, velocity	10 = 1.0 ips 20 = 2.0 ips 30 = 3.0 ips 50 = 5.0 ips

DC supply voltage	R _L (max resistance) ²	R _L (minimum wattage capability) ³
12 VDC	100 Ω	1/8 watt
20 VDC	500 Ω	1/4 watt
24 VDC	700 Ω	1/2 watt
26 VDC	800 Ω	1/2 watt
30 VDC	1.000 Ω	1/2 watt

Notes: 1 Maximum loop resistance (R_L) can be calculated by:

$$R_{L} = \frac{V_{DC power} - 10 \text{ V}}{20 \text{ mA}}$$

- 2 Lower resistance is allowed, greater than 10 Ω recommended.
- 3 Minimum R_L wattage determined by: (0.0004 x R_I).

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.