ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

$\underbrace{\text { D } \underbrace{T M}}_{\text {MAX }}$

MeterView Pro
USB Install

Rate/Totalizer

- Two (2) 0-20 mA, 4-20 mA, 0-5 V, 1-5 V, and $\pm 10 \mathrm{~V}$ Inputs
- Displays Two Flow Inputs Simultaneously
- Displays Rate and Total Simultaneously
- Math Functions Capabilities
- Isolated 24 VDC @ 25 mA Transmitter Power Supply
- Count Up or Down, Total \& Grand Total
- Open Chanel Flow with Programmable Exponent
- Non-Resettable Grand Total
- 32-point Linearization
- Modern, Sleek and Practical Enclosure
- Display Mountable at $0^{\circ}, 90^{\circ}, 180^{\circ}$, \& 270° Degrees
- Explosion-Proof, IP68, NEMA 4X Enclosure
- SafeTouch ${ }^{\circledR}$ Through-Glass Button Programming
- Flanges for Wall or Pipe Mounting
- Superluminous Sunlight Readable Display
- Free USB Programming Software \& Cable
- 4 Relays + Isolated 4-20 mA Output Option

PRECISION DIGITAL CORPORATION

233 South Street • Hopkinton MA 01748 USA
Tel (800) 343-1001• Fax (508) 655-8990

www.predig.com

Disclaimer

The information contained in this document is subject to change without notice. Precision Digital makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for a particular purpose.

- This product is not recommended for life support applications or applications where malfunctioning could result in personal injury or property loss. Anyone using this product for such applications does so at his/her own risk. Precision Digital Corporation shall not be held liable for damages resulting from such improper use.

4 Warnin	This product is not recommended for life support applications or applications where malfunctioning could result in personal injury or property loss. Anyone using this product for such applications does so at his/her own risk. Precision Digital Corporation shall not be held liable for damages resulting from such improper use. Failure to follow installation guidelines could result in death or serious injury. Make sure only qualified personnel perform the installation. Never remove the instrument cover in explosive environments when the circuit is live. Cover must be fully engaged to meet flameproof/explosion-proof requirements. Information in this manual supersedes all enclosure, compliance, and agency approval information included in additional product manuals included with this product.

Limited Warranty

Precision Digital Corporation warrants this product against defects in material or workmanship for the specified period under "Specifications" from the date of shipment from the factory. Precision Digital's liability under this limited warranty shall not exceed the purchase value, repair, or replacement of the defective unit.

Registered Trademarks

MeterView ${ }^{\circledR}$ Pro is a registered trademark of Precision Digital Corporation. Modbus ${ }^{\circledR}$ is a Registered Trademark of Schneider Automation Inc. All other trademarks mentioned in this document are the property of their respective owners.
© 2018 Precision Digital Corporation. All rights reserved.
www.predig.com

Table of Contents

Table of Contents 3
Table of Figures 4
Introduction 4
Ordering Information 5
Specifications -5
General -5
Dual Process Input -6
Dual Rate/Totalizer -7
Relays -7
Isolated 4-20 mA Transmitter Output -8
Digital Inputs \& Outputs -8
Serial Communications -8
MeterView Pro -8
Product Ratings and Approvals; -9
Compliance Information 10
Safety 10
Electromagnetic Compatibility 10
Safety Information 11
Installation 11
Unpacking 11
Pre-Installed Conduit/Stopping Plug 12
Mounting 12
Cover Jam Screw 12
Transmitter Supply Voltage Selection (P+, P-) -- 12
Connections 13
Required \& Factory Wired Connection 13
Connectors Labeling 14
Power Connections 14
Signal Connections 15
Serial Communications Connections 16
Three Wire Connections 16
Using ProVu Serial Adapters 18
Relay Connections 19
Switching Inductive Loads 19
F4 Digital Input Connections 20
4-20 mA Output Connections 20
Analog Output Transmitter Power Supply 20
Interlock Relay Feature 20
Digital I/O Connections 21
External Switch Contacts 21
Setup and Programming 22
SafeTouch ${ }^{\circledR}$ Buttons 22
Front Buttons and Status LED Indicators 23
MeterView ${ }^{\otimes}$ Pro Software 24
MeterView Pro Installation 24
Display Functions \& Messages 25
Main Menu 28
Setting Numeric Values 28
Setting Up the Meter (5EtuP) 29
Setting the Input Signal (inPut) 29
Setting the Totalizer Features (LotRL) 30
Setting the Rate, Total, \& Grand Total Units/Tags ($u n, t 5$) 30
Setting the Decimal Point (dEc PE) 31
Programming the Rate/Totalizer (ProL) 32
Input Calibration Method (InCAL) 32

Scaling the Meter without a Signal Source (5LRL -
R, 5[RL -b) ---33
Error Message (Error) 33
Calibrating the Meter with External Source 34
Total and Grand Total Setup 35
Total \& Grand Total Reset 35
Setting the Display Parameters \& Intensity (OSPLRS 236
Setting the Relay Operation (rELRS) 37
Setting the Relay Assignment (R55 心n) 38
Setting the Relay Action (Rct 38
Programming Set and Reset Points 39
Setting Fail-Safe Operation 39
Programming Time Delay 39
Relay Action for Loss of 4-20 mA Input (Loop Break) 39
Relay and Alarm Operation Diagrams 40
High Alarm Operation (Set > Reset) 40
Low Alarm Operation (Set < Reset) 40
High Alarm with Fail-Safe Operation (Set > Reset) 40
Low Alarm with Fail-Safe Operation (Set < Reset) 40
Pump Alternation Control Operation 41
Relay Sampling Operation 41
Signal Loss or Loop Break Relay Operation 42
Time Delay Operation 42
Relay Operation Details 43
Overview 43
Relays Auto Initialization 43
Fail-Safe Operation 43
Front Panel LEDs 43
Latching and Non-Latching Relay Operation 44
Non-Latching Relay (Ruto) 44
Non-Latching Relay ($\mathrm{R}_{\mathrm{-}-\mathrm{m}}^{\mathrm{R}} \mathrm{R}$) 44
Latching Relay (Listch) 44
Latching Relay ((Lt-CLr) 44
Acknowledging Relays 45
Pump Alternation Control Applications (RLEErn)-- 45
Application \#1: Pump Alternation Using Relays 1\& 245
Setting Up the Interlock Relay (Force On) Feature46
Scaling the 4-20 mA Analog Output (Rout) 46
Reset Menu (rE5EE) 47
Control Menu (ContrL) 47
Setting Up the Password (PA55) 47
Protecting or Locking the Meter Functions 47
Total Reset Password \& Non-Resettable Total 48
Making Changes to a Password Protected Meter 48
Disabling Password Protection 48
Advanced Features Menu 49
Advanced Features Menu \& Display Messages- 49
Noise Filter (filter) 51
Noise Filter Bypass (bypass) 51
Rounding Feature (round) 51
Modbus RTU Serial Communications (5Er , ifit - 52
Serial Communications Overview 52
Select Menu (SELEct) 53
Signal Input Conditioning (FuncEn) 54
Square Root Linearization (59ュRrE) 54
Programmable Exponent Linearization (ProL E)-- 54
Multi-Point Linearization (Linear) 54
Math Function (nmath) 55
Math Constants (Lon5t 55
Low-Flow Cutoff (LutofF) 57
Totalizer Count Up/Down (Lount) 57
Analog Output Programming (RoutPr) 57
Programmable Function Keys User Menu (u5Er) 58
Internal Calibration (ILRL) 60
Meter Operation 61
Front Buttons Operation 61
SafeTouch ${ }^{\circledR}$ Buttons 61
F4 Operation 62
Maximum/Minimum Readings 62
Troubleshooting 63
Diagnostics Menu (d, RE) 63
Determining Software Version 63
Reset Meter to Factory Defaults 63
Factory Defaults \& User Settings 64
Troubleshooting Tips 65
Service 67
Mounting Dimensions 67
EU Declaration of Conformity 68

Table of Figures

Figure 1. Transmitter Supply Voltage Selection.....
12 Figure 12. Relay Connections
Figure 13. AC and DC Loads Protection.................... 19
Figure 14. Low Voltage DC Loads Protection 19
14 Figure 15. F4 Digital Input Connections 20

Figure 3. Connector Labeling for Fully Loaded

 PD6262Figure 4. Power Connections...................................... 1
Figure 5. Transmitters Powered by Internal Supply. 15
Figure 6. Transmitter Powered by Ext. Supply or Self-
Powered .. 15
Figure 7. Voltage Input Connections.......................... 15
Figure 8: ProtEX-MAX Connections to a Serial Converter

16
Figure 9. Three-Wire RS485 Connection................... 16
Figure 10: RS-485 Wiring.. 17
Figure 11: RS-485 Two-Wire Multi-Drop Wiring.............. 18

Figure 16. 4-20 mA Output Connections..................... 20
Figure 17. Interlock Connections 20
Figure 18: Digital I/O Connections 21
Figure 19. Acknowledge Relays w/Function Key or Digital Input .45
Figure 20: General Four-Wire Network Connection.. 53
Figure 21: General Two-Wire Network Connection... 53
Figure 22: Enclosure Dimensions - Front View 67
Figure 23: Enclosure Dimensions - Side Cross
Section View67

Introduction

The ProtEX-MAX PD8-6262 offers all the functionality of the ProVu PD6262 as a fully FM, CSA, ATEX, and IECEx approved explosion-proof product. It is specifically designed to display flow rate and total from two (2) analog output (4-20 mA, 0-5 V, 1-5 V, etc.) flowmeters. It displays these signals on a dual-line, 6 -digit SunBright $®$ sunlight readable display. The two display lines can be used to show both flow rates simultaneously, to alternate between the two inputs showing both the flow rate and total of each, or to show the result of math functions performed on the flow rates and totals. The total overflow feature allows up to 9-digit totals and grand totals to be displayed. The PD8-6262 includes a 24 VDC power supply to drive the flowmeter and can be equipped with up to four internal relays and a $4-20 \mathrm{~mA}$ analog output. It can be programmed and operated without opening the housing by using the built-in SafeTouch $®$ through-glass buttons or the RS485 serial communication port with free Modbus $®^{\circledR}$ protocol.

Ordering Information

SunBright Display Models

85-265 VAC Model	12-24 VDC Model	Options Installed
PD8-6262-6H0	PD8-6262-7H0	No options
PD8-6262-6H7	PD8-6262-7H7	4 relays \& 4-20 mA output

! WARNING - Cancer and Reproductive Harm - www.P65Warnings.ca.gov

Accessories

Model	Description
PDA1232	RS-232 serial adapter
PDA1485	RS-485 serial adapter
PDA7485-I	RS-232 to RS-422/485 isolated converter
PDA8232-N	USB to RS-232 non-isolated converter
PDA8485-I	USB to RS-422/485 isolated converter
PDX6901	Suppressor (snubber): 0.01μ F/470 $\Omega, 250$ VAC

Specifications

Except where noted all specifications apply to operation at $+25^{\circ} \mathrm{C}$.

Display	Line 1: 0.60 " (15 mm) high, red LEDs Line 2: $0.46^{\prime \prime}(12 \mathrm{~mm})$ high, red LEDs 6 digits each (-99999 to 999999), with lead zero blanking
Display Intensity	Eight user selectable intensity levels
Display Update Rate	5/second (200 ms)
Overrange	Display flashes 999999
Underrange	Display flashes -99999
Programming Methods	Four front panel buttons, digital inputs, PC and MeterView Pro software, or Modbus registers.
Max/Min Display	Max/min readings reached by the process are stored until reset by the user or until power to the meter is cycled.
Noise Filter	Programmable from 2 to 199 (0 will disable filter)
Filter Bypass	Programmable from 0.1 to 99.9% of calibrated span
Non-Volatile Memory	All programmed settings are stored in nonvolatile memory for a minimum of ten years.

Display Assignment	Display lines 1 \& 2 may be assigned to show:
	One or more rate channels: Channel A (Ch-A), B (Ch-B), or C (Ch-C)
	Toggle between rate channels: Ch-A \& Ch-B, Ch-A \& Ch-C, Ch-B \& Ch-C, and Ch-A, Ch-B, \& Ch-C
	Total or grand total: Ch-A or Ch-B
	Rate and total or grand total: Ch-A, Ch-B
	Relay set points
	Max and/or min values: Ch-A, Ch-B, or Ch-C
	Toggle between any rate channel \& units
	Total and units: Ch-A or Ch-B
	Toggle between totals: Ch-A \& Ch-B; ChA, Ch-B, and sum of Ch-A and Ch-B
	Modbus input
	Line 2 may also be set to show engineering units or be off, with no display.
Recalibration	All ranges are calibrated at the factory. Recalibration is recommended at least every 12 months.
Power Options	85-265 VAC $50 / 60 \mathrm{~Hz}, 90-265 \mathrm{VDC}, 20 \mathrm{~W}$ \max or $12-24 \mathrm{VDC} \pm 10 \%$, 15 W max
	Powered over USB for configuration only
Password	Three programmable passwords restrict modification of programmed settings and two prevent resetting the totals.
	Pass 1: Allows use of function keys and digital inputs
	Pass 2: Allows use of function keys, digital inputs and editing set/reset points
	Pass 3: Restricts all programming, function keys, and digital inputs.
	Total: Prevents resetting the total manually Gtotal: Prevents resetting the grand total manually

ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

Fuse	Required external fuse: UL Recognized, 5 A max, slow blow; up to 6 meters may share one 5 A fuse
Isolated Transmitter Power Supply	Terminals P+\& P-: 24 VDC $\pm 10 \%$ Selectable for 24, 10, or 5 VDC supply (internal jumper J4). Transmitter supply rated @ 25 mA max.
Normal Mode Rejection	Greater than 60 dB at $50 / 60 \mathrm{~Hz}$
Isolation	4 kV input/output-to-power line 500 V input-to-output or output-to-P+ supply
Overvoltage Category	Installation Overvoltage Category II: Local level with smaller transient overvoltages than Installation Overvoltage Category III.
Environmental	T6 Class operating temperature range $\mathrm{Ta}=$ -40 to $60^{\circ} \mathrm{C}$ T5 Class operating temperature range $\mathrm{Ta}=$ -40 to $65^{\circ} \mathrm{C}$
Max Power Dissipation	Maximum power dissipation limited to 15.1 W.
Connections	Screw terminals accept 12 to 22 AWG wire
Enclosure	Explosion-proof die cast aluminum with glass window, corrosion resistant epoxy coating, color: blue. NEMA 4X, 7, \& 9, IP68. Default conduit connections: Four 3/4" NPT threaded conduit openings and two $3 / 4$ " NPT metal conduit plugs with 12 mm hex key fitting installed. Additional conduit opening configurations may be available; verify quantity and sizes on specific device labeling during installation.
Mounting	Four slotted flanges for wall mounting or NPS $11 / 2^{\prime \prime}$ to $2^{1} / 2^{\prime \prime}$ or DN 40 to 65 mm pipe mounting. See Mounting Dimensions on page 67.
Tightening Torque	Screw terminal connectors: 5 lb -in (0.56 Nm)
Overall Dimensions	$\begin{aligned} & 6.42 " \times 7.97 " \times 8.47 "(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \\ & (163 \mathrm{~mm} \times 202 \mathrm{~mm} \times 215 \mathrm{~mm}) \end{aligned}$
Weight	$16.0 \mathrm{lbs}(7.26 \mathrm{~kg}$)
Warranty	3 years parts \& labor

Dual Process Input

Two Inputs	Two non-isolated inputs, each separately field selectable: $0-20,4-20 \mathrm{~mA}, \pm 10 \mathrm{~V} \mathrm{(0-5}, \mathrm{1-5}, \mathrm{0-10} \mathrm{V)}$, Modbus PV (Slave)
Channels	Channel A, Channel B, Channel C (Math channel)
Programm-	Constant P (Adder): -99.999 to 999.999, default: 0.000 able ConstantsConstant F (Factor): 0.001 to 999.999, default: 1.000

Math Functions

Name	Function	Setting
Addition	$(\mathrm{A}+\mathrm{B}+\mathrm{P})^{*} \mathrm{~F}$	Sunm
Difference	$(\mathrm{A}-\mathrm{B}+\mathrm{P})^{*} \mathrm{~F}$	diF
Absolute diff.	$((\operatorname{Abs}(\mathrm{A}-\mathrm{B}))+\mathrm{P})^{*} \mathrm{~F}$	diFAbS
Average	$(((A+B) / 2)+P)^{*} F$	AvG
Multiplication	$\left(\left(A^{*} \mathrm{~B}\right)+\mathrm{P}\right)^{*} \mathrm{~F}$	nmulti
Division	$((\mathrm{A} / \mathrm{B})+\mathrm{P})^{*} \mathrm{~F}$	divide
Max of A or B	$((\mathrm{AB}-\mathrm{Hi})+\mathrm{P})^{*} \mathrm{~F}$	$\mathrm{Hi}-\mathrm{Ab}$
Min of A or B	$((\mathrm{AB}-\mathrm{Lo})+\mathrm{P})^{*} \mathrm{~F}$	Lo-Ab
Draw	($(\mathrm{A} / \mathrm{B})-1)^{*} \mathrm{~F}$	drAuw
Weighted avg.	$\left((\mathrm{B}-\mathrm{A})^{*} \mathrm{~F}\right)+\mathrm{A}$	uw avg
Ratio	(A/B)*F	ratio
Ratio 2	$((B-A) / A)+P) * F$	rfit oz
Concentration	$(\mathrm{A} /(\mathrm{A}+\mathrm{B}))^{*} \mathrm{~F}$	Concen
Total Addition	$(\mathrm{t} A+\mathrm{tB}+\mathrm{P})^{*} \mathrm{~F}$	Sunm t
G. Tot. Addition	$(\mathrm{GtA}+\mathrm{GtB}+\mathrm{P})^{*} \mathrm{~F}$	SunmGT
Total Difference	(t - t B+P)* ${ }^{\text {F }}$	Dift
G. Tot. Difference	$(\mathrm{GtA}-\mathrm{GtB}+\mathrm{P})^{*} \mathrm{~F}$	Dif GT
Total Ratio	$(\mathrm{t} / \mathrm{/tB})^{\star} \mathrm{F}$	Tratio
Total Ratio 2	$((t B-t A) / t A)^{*} F$	t-rRtz
Total Percent	$(t A /(t A+t B))^{* 100}$	T PCT

Note: The F constant can be any value from 0.001 to 999.999. If the value is less than 1 , it will have the same effect as a divider. For example, the average could also be derived by using $(A+B)^{\star} F$, where $F=0.500$.
$\left.\begin{array}{lll}\hline \begin{array}{l}\text { Sequence of } \\ \text { Operations } \\ \text { for Input }\end{array} & \text { 2. } & \begin{array}{l}\text { Select Input for A and B } \\ \text { Set up the rate, total, and grand total } \\ \text { engineering units for channels A \& B, } \\ \text { and units for math channel C }\end{array} \\ \text { Programming } \\ \text { Set up rate, total, and grand total } \\ \text { decimal points for channels A \& B, and } \\ \text { decimal point for math channel C }\end{array}\right]$

Calibration Range	Input Minimum Span Range Input 1 \& Input 2 $4-20 \mathrm{~mA}$ 0.15 mA $\pm 10 \mathrm{~V}$ 0.01 V An error message will appear if the input 1 and input 2 signals are too close together.
Input Impedance	Voltage ranges: greater than $500 \mathrm{k} \Omega$ Current ranges: 50-100 Ω (depending on resettable fuse impedance)
Input Overload	Current input protected by resettable fuse, 30 VDC max. Fuse resets automatically after fault is removed.
F4 Digital Input Contacts	3.3 VDC on contact. Connect normally open contacts across F4 to COM.
F4 Digital Input Logic Levels	Logic High: 3 to 5 VDC Logic Low: 0 to 1.25 VDC
HART Transparency	Analog input will not interfere with existing HART communications on the wired 4-20 mA signal
Dual Rate/Totalizer	
Rate Display Indication	-99999 to 999999, lead zero blanking.
Total Display \& Total Overflow	0 to 999,999; automatic lead zero blanking. Up to 999,999,999 with total-overflow feature. "oF" is displayed to the left of total overflow and $\mathbf{\Delta}$ LED is illuminated.
Total Decimal Points	Up to five decimal places or none: d.ddddd, d.dddd, d.ddd, didd, d.d, or dddddd Total decimal point is independent of rate decimal point. Channel A and B decimal points programmed independently.
Dual Totalizer	Calculates total for channels A and B based on rate and field programmable multiplier to display total in engineering units. Time base must be selected according to the time units in which the rate is displayed. Channel A and B totalizer parameters programmed independently.
Totalizer Rollover	Totalizer rolls over when display exceeds 999,999,999. Relay status reflects display.
Total Overflow Override	Program total A or B total reset for automatic with 0.1 second delay and set point 1 for 999,999
Totalizer Alarm Presets	Up to eight, user selectable under setup menu. Any set point can be assigned to channel A or B total or grand total (or C) and may be programmed anywhere in the range of the meter for total alarm indication.
Total Reset Password	Total and grand total passwords may be entered to prevent resetting the totals or grand totals from the front panel.
Total \& Grand Total Reset	Via front panel button, external contact closure on digital inputs, automatically via user selectable preset value and time delay, or through serial communications. Channel A and B total and grand total reset parameters programmed independently.

Non- Resettable Total	The grand totals can be programmed as non-resettable totals by entering the password "050873". Both channels are set to non-resettable when this password is entered.
	Cance the Grand Totals have
	Caution! resettable" the feature cabled.

ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

Output Source	Input channels A or B, rate, total, or grand total; channel C; max or min for channel A or B; highest or lowest max or min of A and B; set points 1-8; Modbus input; or manual control mode
Scaling Range	1.000 to 23.000 mA for any display range
Calibration	Factory calibrated: 4.000 to $20.000=4-20$ mA output
Analog Out Programming	23.000 mA maximum for all parameters: Overrange, underrange, max, min, and break
Accuracy	$\pm 0.1 \%$ of span $\pm 0.004 \mathrm{~mA}$
Temperature Drift	$0.4 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$ max from 0 to $65^{\circ} \mathrm{C}$ ambient, $0.8 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$ max from -40 to $0^{\circ} \mathrm{C}$ ambient Note: Analog output drift is separate from input drift.
Isolated Transmitter Power Supply	Terminals I+ \& R: $24 \mathrm{VDC} \pm 10 \%$. May be used to power the 4-20 mA output or other devices. Refer to Figure 3 on page 14 and Figure 16 on page 20. All models @ 25 mA max.
External Loop Power Supply	35 VDC maximum
Output Loop Resistance	Power supply Minimum Maximum
	$24 \mathrm{VDC} \quad 10 \Omega \quad 700 \Omega$
	35 VDC (external) $\quad 100 \Omega \quad 1200 \Omega$
Digital Inputs \& Outputs	
Channels	4 digital inputs \& 4 digital outputs
Digital Input Logic High	3 to 5 VDC
Digital Input Logic Low	0 to 1.25 VDC
Digital Output Logic High	3.1 to 3.3 VDC
Digital Output Logic Low	0 to 0.4 VDC
Source Current	10 mA maximum output current

Sink Current	1.5 mA minimum input current
	To be used as pull-up for digital inputs only.
	Connect normally open pushbuttons $\mathbf{+ 5 ~ V}$
Terminal	across +5 V \& DI 1-4.

A DO NOT use +5 V WARNING external devices.
The on-board digital inputs (1-4) are designed to mimic the behavior of the front panel buttons (Menu, F1, F2, \& F3). If you wish to change their behavior, reassign F1-F3 to the desired function, then change the corresponding digital input to match.

Serial Communications

Slave Id	1-247 (Meter address)
Compatibility	EIA-485
Connectors	Removable screw terminal connector
Max Distance	3,937' (1,200 m) max
Status Indication	Separate LEDs for Power (P), Transmit (TX), and Receive (RX)
Baud Rate	300-19,200 bps
Transmit Time Delay	Programmable between 0 and 199 ms
Data	8 bit (1 start bit, 1 or 2 stop bits)
Parity	Even, Odd, or None with 1 or 2 stop bits
Byte-To-Byte Timeout	0.01 - 2.54 second
Turn Around Delay	Less than 2 ms (fixed)
Note: Refer to the PROVU ${ }^{\oplus}$ Modbus Register Tables located at www.predig.com for details.	
MeterView Pro	
System Requirements	Microsoft ${ }^{\text {® }}$ Windows ${ }^{\circledR}$ XP/Vista/7/8/10
Communications	USB 2.0 (Standard USB A to Micro USB B)
Configuration	Configure device settings one at a time

Product Ratings and Approvals;

FM Enclosure: Type 4X; IP66
Class I, Division 1, Groups B, C, D
Class II, Division 1, Groups E, F, G
Class III, Division 1, T5/T6
Class I, Zone 1, AEx d, IIC Gb T5/T6
Zone 21, AEx tb IIIC $\mathrm{T} 90^{\circ} \mathrm{C}$; Ta $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
$\mathrm{T} 6 \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$; $\mathrm{T} 5 \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Certificate Number: 3047283
CSA Class I, Division 1, Groups B, C, D
Class II, Division 1, Groups E, F, G
Class III, Division 1
Class I Zone 1 Ex d IIC
Zone 21 Ex tb IIIC $790^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}<$ Tamb. $<+60^{\circ} \mathrm{C}$; Temperature Code T6
$-40^{\circ} \mathrm{C}$ < Tamb. < $+65^{\circ} \mathrm{C}$; Temperature Code T5
Enclosure Type 4X \& IP66
Certificate Number: 2531731
ATEX
(x) II 2 G D

Exd IIC T* Gb
Ex tb IIIC T90 ${ }^{\circ} \mathrm{C}$ Db IP68
$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+^{* \circ} \mathrm{C}$
*T6 $=-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
*T5 $=-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Certificate number: Sira 12ATEX1182
IECEx Exd IIC T* Gb
Ex tb IIIC $790^{\circ} \mathrm{C}$ Db IP68
$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+{ }^{* \circ} \mathrm{C}$
*T6 $=-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
*T $5=-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Certificate Number: IECEx SIR 12.0073

Special Conditions for Safe Use:

Use suitably certified and dimensioned cable entry device and/or plug. The equipment shall be installed such that the supply cable is protected from mechanical damage. The cable shall not be subjected to tension or torque. If the cable is to be terminated within an explosive atmosphere, then appropriate protection of the free end of the cable shall be provided. Cable must be suitable for $90^{\circ} \mathrm{C}$.

Year of Construction

This information is contained within the serial number with the first four digits representing the year and month in the YYMM format.

For European Community: The ProtEX-MAX must be installed in accordance with the ATEX directive 94/9/EC, and the product certificate Sira 12ATEX1182.

Compliance Information

Safety

UL \& c-UL Listed	USA \& Canada UL 508 Industrial Control Equipment
UL File Number	E160849
Front Panel	UL Type 4X, NEMA 4X, IP65; panel gasket provided
Low Voltage	EN 61010-1:2010
Directive	Safety requirements for measurement, control, and laboratory use

Electromagnetic Compatibility

Emissions	EN 55022:2010 Class A ITE emissions requirements
Radiated Emissions	Class A
AC Mains Conducted Emissions	Class A
Immunity	EN 61326-1:2013 Measurement, control, and laboratory equipment EN 61000-6-2:2005 EMC heavy industrial generic immunity standard
RFI - Amplitude Modulated	$80-1000 \mathrm{MHz} 10 \mathrm{~V} / \mathrm{m} 80 \%$ AM (1 kHz) 1.4-2.0 GHz $3 \mathrm{~V} / \mathrm{m} 80 \% \mathrm{AM}(1 \mathrm{kHz})$ $2.0-2.7 \mathrm{GHz} 1 \mathrm{~V} / \mathrm{m} 80 \% \mathrm{AM}(1 \mathrm{kHz})$
Electrical Fast Transients	$\pm 2 \mathrm{kV}$ AC mains, $\pm 1 \mathrm{kV}$ other
Electrostatic Discharge	$\pm 4 \mathrm{kV}$ contact, $\pm 8 \mathrm{kV}$ air
RFI - Conducted	10V, $0.15-80 \mathrm{MHz}, 1 \mathrm{kHz} 80 \%$ AM
AC Surge	$\pm 2 \mathrm{kV}$ Common, $\pm 1 \mathrm{kV}$ Differential
Surge	1 KV (CM)
Power- Frequency Magnetic Field	$30 \mathrm{~A} / \mathrm{m} 70 \% \mathrm{~V}$ for 0.5 period
Voltage Dips	$40 \% \mathrm{~V}$ for 5 \& 50 periods $70 \% \mathrm{~V}$ for 25 periods
Voltage Interruptions	<5\%V for 250 periods
Note: Testing was condu enclosures with cab optimize EMC per	ucted on PD6200 Series meters installed through able shields grounded at the point of entry represe formance.

Declaration of Conformity available at www.predig.com

Safety Information

A

WARNINGS

- Read complete instructions prior to installation and operation of the instrument.
- Installation and service should be performed only by trained service personnel. Service requiring replacement of internal sub-components must be performed at the factory.
- Disconnect from supply before opening enclosure. Keep cover tight while circuits are alive. Conduit seals must be installed within 18" (450 mm) of the enclosure or within 2 " (50 mm) for Zone installations.
- Verify that the operating atmosphere of the instrument is consistent with the appropriate hazardous locations certifications.
- If the instrument is installed in a high voltage environment and a fault or installation error occurs, high voltage may be present on any lead
- Read all product labels completely and follow all instructions and requirements listed on the labels for installation or service.

Installation

Install in accordance with applicable local and national regulations (e.g. NEC).
For Installation in USA: The ProtEX-MAX must be installed in accordance with the National Electrical Code (NEC) NFPA 70.

For Installation in Canada: The ProtEX-MAX must be installed in accordance with the Canadian Electrical Code CSA 22.1. All power supplies below 36 V and input circuits must be derived from a CSA Approved Class 2 source.

For European Community: The ProtEX-MAX must be installed in accordance with the ATEX directive 94/9/EC and the product certificate Sira 12ATEX1182.

Disconnect from supply before opening enclosure. Keep cover tight while circuits are alive. Conduit seals must be installed within 18 " $(450 \mathrm{~mm})$ of the enclosure or within 2" (50 mm) for Zone installations.
Wiring connectors are accessed by opening the enclosure. To access electrical connectors, remove the 2 captive screws and then remove the electronics module. Connectors are on the rear of the electronics module.

Unpacking

Remove the instrument from packing box. Inspect the packaging and contents for damage. Report damages, if any, to the carrier.
If any part is missing or the instrument malfunctions, please contact your supplier or the factory for assistance.

Pre-Installed Conduit/Stopping Plug

The PD8-6000 is supplied with two pre-installed conduit plugs for installations that do not require the use of all conduit entries. The conduit/stopping plugs include an internal 12 mm hexagonal socket recess for removal. The pre-installed plugs and their installation are included in the hazardous area approvals for the PD8 Series enclosure.

In hazardous areas, conduit and conduit/stopping plugs require the application of non-setting (solvent free) thread sealant. It is critical that all relevant hazardous area guidelines be followed for the installation or replacement of conduit or plugs.

Mounting

The ProtEX-MAX has four slotted mounting flanges that should be used for pipe mounting or wall mounting. Refer to Mounting Dimensions, page 67 for details.

$$
\begin{aligned}
& \text { Do not attempt to loosen or remove flange bolts } \\
& \text { while the instrument is in service. }
\end{aligned}
$$

Cover Jam Screw

The cover jam screw should be properly installed once the instrument has been wired and tested in a safe environment. The cover jam screw is intended to prevent the removal of the instrument cover in a flameproof environment without the use of tools. Using a M2 hex wrench, turn the screw clockwise until the screw contacts the aluminum enclosure. Turn the screw an additional $1 / 4$ to $1 / 2$ turn to secure the cover. Caution: Excess torque may damage the threads and/or wrench.

Transmitter Supply Voltage Selection (P+, P-)

All meters, including models equipped with the 12-24 VDC power option, are shipped from the factory configured to provide 24 VDC power for the transmitter or sensor.
If the transmitter requires 5 or 10 VDC excitation, the internal jumper J4 must be configured accordingly.
To access the voltage selection jumper:

1. Remove all the wiring connectors.
2. Unscrew the back cover.
3. Slide out the back cover by about 1 inch.
4. Configure the J4 jumper, located behind the input signal connector, for the desired excitation voltage as shown.

Figure 1. Transmitter Supply Voltage Selection

Connections

	\bullet Static electricity can damage sensitive components.
	\bullet Observe safe handling precautions for static-sensitive components.
• Use proper grounding procedures/codes.	
WARNINGS	- If the instrument is installed in a high voltage environment and a fault or installation error occurs, high voltage may be present on any lead or terminal.
	- Follow all fusing and wiring precautions requirements for the
instrument integrated to the PD8 Series model number being	
connected.	

To access the connectors, remove the enclosure cover and unscrew the two captive screws that fasten the electronics module. Signal connections are made to de-pluggable connectors on the back of the electronics module.
Some connectors may be provided already connected. These connections are required for proper operation of the ProtEX-MAX, and should not be removed unless instructed to by this manual. Wires marked as being used for testing purposes should be removed.
Grounding connections are made to the two ground screws provided on the base - one internal and one external.
After all connections have been completed and verified, apply power to the unit.

Required \& Factory Wired Connection

The ProtEX-MAX comes with a pre-wired connection. This connection is detailed below, and must be maintained in order for the instrument to function properly.

Observe all safety regulations. Electrical wiring should be performed in accordance with all agency requirements and applicable national, state, and local codes to prevent damage to the meter and ensure personnel safety.

Figure 2: Integrated ProVu Required Connections

Connectors Labeling

The connectors' label, affixed to the meter, shows the location of all connectors available with requested configuration.

| Do not connect any equipment other than Precision |
| :--- | :--- |
| Digital's expansion modules, cables, or meters to the |
| RJ45 M-LINK connector. Otherwise damage will occur |
| to the equipment and the meter. |

Figure 3. Connector Labeling for Fully Loaded PD6262

Power Connections

Power connections are made to a two-terminal connector labeled POWER on Figure 3. The meter will operate regardless of DC polarity connection. The + and - symbols are only a suggested wiring convention.

POWER

Required External Fuse:
5 A max, 250 V Slow Blow
Figure 4. Power Connections

Signal Connections

Signal connections are made to a nine-terminal connector labeled SIGNAL on Figure 3. The COM (common) terminals are the return for the $4-20 \mathrm{~mA}$ and the $\pm 10 \mathrm{~V}$ input signals. The two COM terminals connect to the same common return, and are not isolated.

Current and Voltage Connections

The following figures show examples of current and voltage connections.
There are no switches or jumpers to set up for current and voltage inputs. Setup and programming is performed through the front panel buttons.

Figure 5. Transmitters Powered by Internal Supply

Figure 6. Transmitter Powered by Ext. Supply or Self-Powered
The current input is protected against current overload by a resettable fuse. The display may or may not show a fault condition depending on the nature of the overload.
The fuse limits the current to a safe level when it detects a fault condition, and automatically resets itself when the fault condition is removed.

Figure 7. Voltage Input Connections
The meter is capable of accepting any voltage from -10 VDC to +10 VDC.

Serial Communications Connections

The ProtEX-MAX has a 5 position terminal block for connecting RS-485 serial devices.
Figure 8 details the wiring connections from the ProtEX-MAX to an RS-485 serial converter (such as the PDA7485 or PDA8485) for a four-wire network.

ProtEX-MAX to RS-485 Serial Converter Connections	
RS-485 Serial Converter	ProtEX-MAX RS- 485 Connections
$\overline{\bar{\prime}}$	$\overline{\bar{I}}$
$\overline{\mathrm{DO}}$	$\overline{\mathrm{DI}}$
DO	DI
$\overline{\mathrm{DI}}$	$\overline{\mathrm{DO}}$
DI	DO

Figure 8: ProtEX-MAX Connections to a Serial Converter
The ProtEX-MAX has three diagnostic LEDs: a Power (P) LED to show when the module is powered properly, a Transmit Data (TX) LED to show when the module is being transmitted to by the PC side, and a Receive Data (RX) LED to show when the module is sending data to a receiving device.
The following diagrams detail how to connect the RS-485 serial communications from the ProtEX-MAX to a RS-485/RS-232 serial converter (PDA7485) in four wire and two wire configurations.

Three Wire Connections

In order to wire the 5 pins for use as a 3 -wire half-duplex RS-485 connection, it is necessary to create a jumper connection between DI - DO and DI-- DO- as shown below.

Figure 9. Three-Wire RS485 Connection

Figure 10: RS-485 Wiring

Notes:

1. Termination resistors are optional and values depend on the cable length and characteristic impedance. Consult the cable manufacturer for recommendations.
2. Refer to RS-232 to RS-485 Converter documentation for further details.
3. Use shielded cable, twisted-pairs plus ground. Connect ground shield only at one location.

Observe all safety regulations. Electrical wiring should be performed in accordance with all agency requirements and applicable national, state, and local codes to prevent damage to the meter and ensure personnel safety.

Figure 11: RS-485 Two-Wire Multi-Drop Wiring
Notes:

1. Termination resistors are optional and values depend on the cable length and characteristic impedance. Consult the cable manufacturer for recommendations.
2. Refer to RS-232 to RS-485 Converter documentation for further details.
3. Use shielded cable, twisted-pair plus ground. Connect ground shield only at one location.

Observe all safety regulations. Electrical wiring should be performed in accordance with all agency requirements and applicable national, state, and local codes to prevent damage to the meter and ensure personnel safety.
When using more than one instrument in a multi-drop or multi-point mode, each meter must be provided with its own unique address.

Using ProVu Serial Adapters

ProVu expansion modules and serial adapters are not included in the hazardous area approvals of the ProtEX-MAX. The PDA1232 may be used only while the ProtEX-MAX is in a safe area, and will disable some features while installed.
ProVu expansion modules and serial adapters are not recommended for use with the ProtEX-MAX. It is recommended that any serial protocol conversion required on the RS-485 communications connection be performed using a PDA7485 RS-232 to RS-485 or PDA8485 USB to RS-485 serial converter located in a safe area.

Relay Connections

Relay connections are made to two six-terminal connectors labeled RELAY1 - RELAY4 on Figure 3. Each relay's C terminal is common only to the normally open (NO) and normally closed (NC) contacts of the corresponding relay. The relays' C terminals should not be confused with the COM (common) terminal of the INPUT SIGNAL connector.

Figure 12. Relay Connections

Switching Inductive Loads

The use of suppressors (snubbers) is strongly recommended when switching inductive loads to prevent disrupting the microprocessor's operation. The suppressors also prolong the life of the relay contacts. Suppression can be obtained with resistor-capacitor (RC) networks assembled by the user or purchased as complete assemblies. Refer to the following circuits for RC network assembly and installation:

Figure 13. AC and DC Loads Protection
Choose R and C as follows:
R: 0.5 to 1Ω for each volt across the contacts
C: 0.5 to $1 \mu \mathrm{~F}$ for each amp through closed contacts

Notes:

1. Use capacitors rated for 250 VAC.
2. RC networks may affect load release time of solenoid loads. Check to confirm proper operation.
3. Install the RC network at the meter's relay screw terminals. An RC network may also be installed across the load. Experiment for best results.

Use a diode with a reverse breakdown voltage two to three times the circuit voltage and forward current at least as large as the load current.

Figure 14. Low Voltage DC Loads Protection
RC Networks Available from Precision Digital
RC networks are available from Precision Digital and should be applied to each relay contact switching an inductive load. Part number: PDX6901.

Note: Relays are de-rated to 1/14th HP (50 watts) with an inductive load.

F4 Digital Input Connections

A digital input, F4, is standard on the meter. This digital input connected with a normally open closure across F4 and COM, or with an active low signal applied to F4.

Figure 15. F4 Digital Input Connections

4-20 mA Output Connections

Connections for the 4-20 mA transmitter output are made to the connector terminals labeled MA OUT. The 4-20 mA output may be powered internally or from an external power supply.

Figure 16. 4-20 mA Output Connections
Analog Output Transmitter Power Supply
The internal 24 VDC power supply powering the analog output may be used to power other devices, if the analog output is not used. The $\mathrm{I}+$ terminal is the +24 V and the R terminal is the return.

Interlock Relay Feature

As the name implies, the interlock relay feature reassigns one, or more, alarm/control relays for use as interlock relay(s). Interlock contact(s) are wired to digital input(s) and trigger the interlock relay. This feature is enabled by configuring the relay, and relative digital input(s) (see page 46). In one example, dry interlock contacts are connected in series to one digital input which will be used to force on (energize) the assigned interlock power relay when all interlock contacts are closed (safe). The interlock relay front panel LED flashes when locked out. The interlock relay would be wired in-series with the load (N/O contact). See below.

Figure 17. Interlock Connections

Digital I/O Connections

The ProtEX-MAX has a 10 position terminal block for connecting digital inputs and outputs.

Figure 18: Digital I/O Connections

The onboard digital inputs (1-4) are configured at the factory to function
identically to the front panel pushbuttons (Menu, F1, F2, \& F3) in order to
work with the SafeTouch buttons. Changing the programming of the digital
inputs will affect the function of the SafeTouch buttons.
If you wish to change the behavior of the digital inputs, re-assign F1-F3 to
the desired function, then change the corresponding digital input to match.

External Switch Contacts

The ProtEX-MAX includes 4 digital inputs. These digital inputs are preconfigured at the factory to function as external contacts to duplicate the front button functions of the instrument. The factory configuration uses the following corresponding digital input terminals for external switch contacts.

Digital Input Connection	Factory Default Function
I1	MENU
I2	RIGHT arrow
I3	UP arrow
14	ENTER arrow

See Digital Inputs \& Outputs in the Specification on page 8 for details on the digital inputs.

$$
\begin{aligned}
& \text { The digital inputs are configured at the factory to function } \\
& \text { identically to the front panel pushbuttons in order to work with } \\
& \text { the SafeTouch buttons. Changing the programming of the } \\
& \text { digital inputs will affect the function of the SafeTouch buttons. }
\end{aligned}
$$

Setup and Programming

The meter is factory calibrated prior to shipment to read in milliamps and volts, depending on the input selection. The calibration equipment is traceable to NIST standards.

Overview

There are no jumpers to set for the meter input selection.
Setup and programming may be done through the infrared through-glass SafeTouch buttons, or using the mechanical buttons when uncovered. There is a slide switch located on the connector board. This is used to enable or disable SafeTouch Buttons.
After power and input signal connections have been completed and verified, apply power to the meter.

SafeTouch ${ }^{\circledR}$ Buttons

The ProtEX-MAX is equipped with four sensors that operate as through-glass buttons so that it can be programmed and operated without removing the cover (and exposing the electronics) in a hazardous area.
These buttons can be disabled for security by selecting DISABLE on the switch labeled NO-CONTACT BUTTONS located on the connector board.
To actuate a button, press one finger to the glass directly over the marked button area. Then retract finger more than three inches from the glass before pressing the next button. When the cover is removed, the four mechanical buttons located next to the sensors are used. The sensors are disabled when a mechanical button is pressed and will automatically be re-enabled after 60 seconds of inactivity. The SafeTouch Buttons are designed to filter normal levels of ambient interference and to protect against false triggering, however, it is recommended that the SafeTouch Buttons be disabled (slide switch to LOCK) if there is an infrared interference source in line-of-sight to the display.
The SafeTouch Buttons are configured by default to duplicate the function of the front panel mechanical pushbuttons associated with the integrated meter. The symbols by each SafeTouch button correspond to a mechanical button as shown in the table on the next page.

SafeTouch Button Tips:

- To the extent possible, install the display facing away from sunlight, windows, reflective objects and any sources of infrared interference.
- Keep the glass window clean.
- Tighten the cover securely.
- Use a password to prevent tampering.

Take caution when cleaning the window glass as it may result in unintentional SafeTouch button events. Only clean the ProtEX-MAX when the system is safely shut down, and inspect the ProtEX-MAX for proper configuration prior to system restart.

Front Buttons and Status LED Indicators

Button Symbol	Description
	Menu
	Right arrow/F1
(1) F2	Up arrow/F2
	Enter/F3
Notes: F4 is a digital input	

LED	Status
$1-8$	Alarm 1-8 indicator
$1-8$ M	Flashing: Relay in manual control mode
A	Channel displayed
C	
$1-4$	Flashing: Relay interlock switch open
Note: LEDs for relays in manual mode flash with the "M" LED every 10 seconds.	

- Press the Menu button to enter or exit the Programming Mode at any time.
- Press the Right arrow button to move to the next digit during digit or decimal point programming.
- Press or hold the Up arrow button to scroll through the menus, decimal point, or to increment the value of a digit.
- Press the Enter button to access a menu or to accept a setting.
- Press and hold the Menu button for three seconds to access the advanced features of the meter.

MeterView ${ }^{\circledR}$ Pro Software

The meter can also be programmed using the PC-based MeterView Pro software included with the meter. This software can be installed on any Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ (XP/Vista/7/8/10) computer by connecting the meter's onboard USB. The meter is powered by the USB connection, so there is no need to wire anything prior to programming the meter, though USB is intended only for meter configuration.

MeterView Pro Installation

1. Connect one end of the provided USB cable to the internal electronics module and the other end to the computer. The computer will automatically install the driver software it needs to talk to the meter. Only one meter may be connected at a time. Attaching multiple meters will cause a conflict with the meter software.

2. Once the driver is installed, an AutoPlay dialog should appear for the drive "MAINSTAL." Click "Open folder to view files." If the computer does not display an AutoPlay dialog for the drive "MAINSTAL," you should open My Computer and doubleclick on the drive labeled "MAINSTAL."
3. Double-click on the file named "MAStart." The program will open a few windows and install two programs on your computer. Simply follow the onscreen instructions until you see one of the dialogs below. If you receive a "User Account Control" warning, click "Yes."
4. If there is an update available, click the "Update" button to install the new version. Otherwise, click "Configure" to begin
 programming your meter.

Note: If you decide to update your MeterView Pro software, once the installation has completed, you will be asked if you want to update the setup files located on the meter itself. This way, you will always have the most current version on the meter for future installs.

Do not unplug the meter while the new installation files are being written to it. The meter will display rate during the process and you will receive an onscreen notification once the process is complete.
Warning!
Data logging for one meter at a time is available with MeterView Pro software. More advanced data acquisition may be accomplished by using any Modbus RTU compliant software. Additional information regarding configuration and monitoring of the meter using MeterView Pro software is available online. Go to www.predig.com/meterview-pro.

Display Functions \& Messages

The following table shows the main menu functions and messages in the order they appear in the menu.

Display	Parameter	Action/Setting Description
SEtup	Setup	Enter Setup menu
inPut	Input	Enter Input selection menu
[h-R*	Input	Set input type for channel A (*or B)
\% 8	4-20 mA	Set meter for 4-20 mA input
Loit	0-10 VDC	Set meter for ± 10 VDC input
tothi	Total	Enable/disable totalizer functions
YE5	Yes	Enable totalizer functions
no	No	Disable totalizer functions
un its	Unit	Select the display units/tags
[h-R*	Rate unit	Set rate unit or tag for channel A (*or B)
Ch-L	Math unit	Set unit or tag for math channel C
tot-8*	Total unit	Set total unit or tag for channel A (*or B)
Utot-8*	Grand total unit	Set grand total unit or tag for channel A (*or B)
dEc Pt	Decimal point	Set decimal point
[h-8*	Decimal point	Set decimal point for channel A (*or B or C)
rfite*	Rate	Set rate decimal point (*channel A and B only)
totRiL*	Total	Set total decimal point (*channel A and B only)
Etotht*	Grand total	Set grand total decimal point (*channel A and B only)
Prout	Program	Enter the Program menu
inchil	Input calibration	Enter the Input Calibration menu
5LPL 8	Scale A	Enter the Scale menu for channel A
5CRL b	Scale B	Enter the Scale menu for channel B
[RL 8	Calibrate A	Enter the Calibration menu for channel A

Display	Parameter	Action/Setting Description
LRL b	Calibrate B	Enter the Calibration menu for channel B
inP i	Input 1	Calibrate input 1 signal or program input 1 value
d L5 t	Display 1	Program display 1 value

Display	Parameter	Action/Setting Description
d 8 b	Display AB	Alternate display of channel A \& B
d fr	Display AC	Alternate display of channel A \& C
d b	Display BC	Alternate display of channel B \& C
d Rt	$\begin{aligned} & \text { Display } \\ & A B C \end{aligned}$	Alternate display of channel A, B, \& C
dt-R	Display total A	Assign display to channe A total
$d \mathrm{t}$ b	Display total B	Assign display to channe B total
d et-R	Display grand total A	Assign display to channe A grand total
d bt-b	Display grand total B	Assign display to channe B grand total
d re-R	Display rate and total A	Alternate display of channel A rate and total
drt-b	Display rate and total B	Alternate display of channel B rate and total
dret-R	Display rate and grand total A	Alternate display of channel A rate and grand total
dret-b	Display rate and grand total B	Alternate display of channel B rate and grand total
d 5Et :*	Display Se	Displays relay 1(*through 8) set point.
d H,-R	Display high A	Display high value of channel A
d Lo-R	Display Iow A	Display low value of channel A
d HL-R	Display high/low A	Alternate between high/low value of channel A
d ${ }^{\text {H }}$	$\begin{aligned} & \text { Display } \\ & \text { high B } \end{aligned}$	Display high value of channel B
d bo-b	Display Iow B	Display low value of channel B
d ${ }^{\text {H }}$	Display High/low B	Alternate between high/low value of channe B

Display	Parameter	Action/Setting Description
d H , - -	$\begin{aligned} & \text { Display } \\ & \text { high C } \end{aligned}$	Display high value of channel C
d Lo-L	Display low C	Display low value of channel C
d $H^{\prime}-5$	Display High/low C	Alternate between high/low value of channel C
d ${ }^{\text {¢ }}$	$\begin{aligned} & \text { Display A } \\ & \text { and } \\ & \text { unitstags } \end{aligned}$	Alternate display of channel A and the unit/tag
d b-u	$\begin{aligned} & \text { Display B } \\ & \text { and } \\ & \text { unitstags } \\ & \hline \end{aligned}$	Alternate display of channel B and the unit/tag
d [-u	Display C and units/tags	Alternate display of channel C and the unit/tag
d tR-u	Display total A and total units A	Alternate display of channel A total and total units
d tb-u	Display total B and total units B	Alternate display of channel B total and total units
d tRb	Display total A and B	Alternate display of channel A total and channel B total
d trit	Display total A, B, and math channel C	Alternate display of channel A total, channel B total, and math result channel C
mา bu5	Display Modbus	Display Modbus input register
d off	Display off	Display blank line 2
d un it	Display unit	Display line 1 channel units
d-inty	Display intensity	Set display intensity level from 1 to 8
relRy	Relay	Enter the Relay menu
855 亿n	Assignment	Assign relays to channels or Modbus
85, 心n :*	Assign 1	Relay 1 (*through 8) assignment
Ch-R*	Channel A^{*}	Assign relay to channel A (*or B or C)
-RtE*	Rate	Assign relay to rate (*channel A and B only)
tot Rit	Total	Assign relay to total (*channel A and B only)
Utotrit*	Grand total	Assign relay to grand total (*channel A and B only)
mา bu5	Modbus	Assign relay to Modbus register
rLy :*	Relay 1	Relay 1 (*through 8) setup
Rat	Action 1	Set relay 1 action

ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

Display	Parameter	Action/Setting Description
Ruto	Automatic	Set relay for automatic reset
$5 E t$	Set 1	Enter relay 1 set point
r5t	Reset 1	Enter relay 1 reset point
A-nman	Auto-manual	Set relay for auto or manual reset any time
LRt[H	Latching	Set relay for latching operation
Lt-ELr	Latchingcleared	Set relay for latching operation with manual reset only after alarm condition has cleared
Riltern	Alternate	Set relay for pump alternation control
5 P (7 Pl	Sample	Set relay for sample time trigger control
OFF	Off	Turn relay off
FR A5F	Fail-safe	Enter Fail-safe menu
FL5 :*	Fail-safe 1	Set relay 1 (*through 8) failsafe operation
on	On	Enable fail-safe operation
off	Off	Disable fail-safe operation
dELRY	Delay	Enter relay Time Delay menu
dLy :*	Delay 1	Enter relay 1 (*through 8) time delay setup
Sn i	On 1	Set relay 1 On time delay
OFF 1	Off 1	Set relay 1 Off time delay
brERH	Loop break	Set relay condition if loop break detected
brERH :*	Break 1	Set relay 1 (*through 8) break condition
Sunore	Ignore	Ignore loop break condition (Processed as a low signal condition)
Un	On	Relay goes to alarm condition when loop break detected
GFF	Off	Relay goes to non-alarm condition when loop break detected
Rout	Analog output	Enter the Analog output scaling menu
Rout 1*	Aout Channel	Analog Output source channel (*1-3)
d.5	Display 1	Program display 1 value

Display	Parameter	Action/Setting Description
Sut 1	Output 1	Program output 1 value (e.g. 4.000 mA)
d.5 2	Display 2	Program display 2 value
Sut ?	Output 2	Program output 2 value (e.g. 20.000 mA)
rESEL	Reset	Press Enter to access the Reset menu
r5t H,	Reset high	Press Enter to reset max display
rSt Lo	Reset low	Press Enter to reset min display
rSt HL	Reset high \& low	Press Enter to reset max \& min displays
tot 8	$\begin{aligned} & \text { Reset total } \\ & A \end{aligned}$	Press Enter to reset channel A total
tot b	Reset total B	Press Enter to reset channel B total
Utot 8	Reset grand total A	Press Enter to reset channel A grand total
Cutot b	Reset grand total B	Press Enter to reset channel B grand total
tot 86	Reset totals A and B	Press Enter to reset channels A and B totals
[t 86	Reset grand totals A and B	Press Enter to reset channels A and B grand totals
Contri	Control	Enter Control menu
Ruto	Automatic	Press Enter to set meter for automatic operation
nา 8 n	Manual	Press Enter to manually control relays or analog output operation
P855	Password	Enter the Password menu
PR55 i	Password 1	Set or enter Password 1
Lincoch	Unlocked	Program password to lock meter
Locd	Locked	Enter password to unlock meter
PR55 2	Password 2	Set or enter Password 2
PR55 3	Password 3	Set or enter Password 3
tothil	Total reset password	Set or enter a total reset password
Utotril	Grand total password	Set or enter a grand total reset password
$\begin{aligned} & 999999 \\ & -99999 \end{aligned}$	Flashing	Over/under range condition

Main Menu

The main menu consists of the most commonly used functions: Reset, Control, Setup, and Password.

- Press Menu button to enter Programming Mode then press the Up arrow button to scroll main menu.
- Press Menu, at any time, to exit and return to Run Mode. Changes made to settings prior to pressing Enter are not saved.
- Changes to the settings are saved to memory only after pressing Enter.
- The display moves to the next menu every time a setting is accepted by pressing Enter.

Setting Numeric Values

The numeric values are set using the Right and Up arrow buttons. Press Right arrow to select next digit and Up arrow to increment digit value. The digit being changed is displayed brighter than the rest. Press and hold Up to auto-increment the display value. If negative numbers are allowed, the first digit position will include a negative symbol (-) after the 9.
Press the Enter button, at any time, to accept a setting or Menu button to exit without saving changes.

Setting Up the Meter (SEtuP)

The Setup menu is used to select:

1. Input signal the meter will accept for channel A and channel B
2. Units for A \& B rate, total \& grand total, and C
3. Decimal positions for A \& B rate, total, and grand total, and C
4. Program the meter using the scale, calibrate, \& total functions
5. Display parameters and intensity
6. Relay assignments and operation
7. $4-20 \mathrm{~mA}$ analog output scaling
Press the Menu button to exit at any time.

Setting the Input Signal (inPut)

Enter the Input menu to set up the meter to display current ($n 7$ 7) or voltage (LioLt) inputs for channel A and channel B.

The current input is capable of accepting any signal from 0 to 20 mA . Select current input to accept $0-20 \mathrm{~mA}$ or 4-20 mA signals.
The voltage input is capable of accepting any signal from -10 to +10 VDC. Select voltage input to accept $0-5,1-5,0-10$, or ± 10 VDC signals.
Channel C is the Math Function
 calculation, which is set up in the Advanced Features menu.

Setting the Totalizer Features（LotRL）

To simply not display the total，select alternative display parameters in the display（ $d 5 P \mathrm{P}$ RS）menu． Enable or disable the totalizer features by selecting＂yE5＂or＂no＂after the input type has been set up for each channel．If the totalizer features are disabled，all the totalizer features and functions are hidden from the menus．Level and process meter features and functions are added to the menus．
If disabling the totRL parameter by selecting no，please refer to the PD6060 manual available at www．predig．com for instructions on setting up the meter parameters．
Notes：1．The totalizer continues working in the background．
2．When selecting＂no＂for Total for a channel，the meter now functions as a PD6060 Dual－Input Process Meter for parameters that affect that channel．We strongly suggest that you download and use the PD6060 instruction manual from our website（www．predig．com）while in this mode of operation．

Setting the Rate，Total，\＆Grand Total Units／Tags（un te5）

Enter the channel A and B rate，total，grand total，and math channel C units（or custom tags）that will be displayed if alternating units is selected in the un it5 menu，or of it is selected as the lower display parameter．
See the flow chart on page 29 for details on accessing the Units menu and parameters．［h－R and $\mathrm{Ch}-\mathrm{b}$ set
 units for the math channel C ．
See the flow chart on page 36 to access the display menu to show the unit or tag on the lower display．
The engineering units or custom legends can be set using the following 7 －segment character set：

Display	Character
\mathbf{D}	0
\mathbf{l}	1
\mathbf{Z}	2
$\mathbf{3}$	3
$\mathbf{4}$	4
$\mathbf{5}$	5
$\mathbf{5}$	6
$\mathbf{7}$	7
$\mathbf{8}$	8
$\mathbf{9}$	9
\mathbf{R}	A
\mathbf{b}	b

Display	Character
［	C
1	c
d	d
E	E
F	F
5	G
9	g
H	H
h	h
1	1
1	i
」	J

Display	Character
H	K
1	L
ก1	m
ก	n
\square	0
0	0
p	P
9	q
r	r
5	S
t	t
山	u

Display	Character
U	V
い」	w
H	X
צ	Y
2	Z
－	－
\checkmark	／
［	］
〕	［
＝	＝
0	Degree（＜）
	Space

Notes：Degree symbol represented by（＜）if programming with MeterView ${ }^{\otimes}$ Pro．The letters＂m＂and＂w＂use two 7－segment LEDs each；when selected the characters to the right are shifted one position．
Press and hold up arrow to auto－scroll the characters in the display．

Setting the Decimal Point (dEc PE)

The decimal point for any channel, rate, total, or grand total, may be set with up to five decimal places or with no decimal point at all.
Pressing the Right arrow moves the decimal point one place to the right until no decimal point is displayed, and then it moves to the leftmost position. Pressing the Up arrow moves the decimal point one place to the left.
There are seven decimal points to set up for three channels: Ch-A rate, total, and grand total; Ch-B rate, total, and grand total; and Ch-C.
After the decimal points are set up, the meter moves to the Program menu.

Programming the Rate/Totalizer (Prof)

It is very important to read the following information, before proceeding to program the meter:

- The meter is factory calibrated prior to shipment to read in milliamps and volts depending on the input selection. The calibration equipment is traceable to NIST standards.
- Use the Scale menu to scale the process input (e.g. 4-20 mA). A calibrated signal source is not needed to scale the meter.
- Use the Calibrate menu to apply a signal from a calibrator or a flowmeter.

The Program menu contains the following menus:

1. Scale channel A and B without a signal source
2. Calibrate channel A and B with a calibrated signal source
3. Channel A and B total time base \& conversion factors
4. Channel A and B grand total time base $\&$ conversion factors
5. Channel A and B reset modes for total \& grand total

The process inputs may be calibrated or scaled to any display value within the range of the meter.

Additional parameters, not needed for most applications, are found in the Advanced Features menu; see Advanced Features Menu, page 49.

Input Calibration Method (InCAL)

There are two methods of calibrating (or scaling) the display for each input channel to show the correct engineering units.

- Use the Scale menu to enter the scaling without a signal source.
- Use the Calibrate menu to apply a signal from a signal source.

Note: The Scale and Calibrate functions are exclusive of each other. The meter uses the last function programmed. Only one of these methods can be employed at a time. The Scale and Calibrate functions can use up to 32 points (default is 2). The number of points should be set in Scale and Calibrate accordingly under the Number of Points (nopts) menu selection prior to scaling and calibration of the meter, see page 54 for details.

Scaling the Meter without a Signal Source (5CRL-R, SLRL-b)

The process inputs ($4-20 \mathrm{~mA}, \pm 10 \mathrm{VDC}$) can be scaled to display the process variables in engineering units. A signal source is not needed to scale the meter; simply program the inputs and corresponding display values.
From the in [RL menu, select channel A or B, followed by 5[RL-R or 5[RL-b, and then set the signal input value and display value for each of the scaling points (default is two).

Scaling the Meter for Channel A (5CAL-A)

Scaling the Meter for Channel B (5CRL-b)

For instructions on how to program numeric values see Setting Numeric Values, page 28.

Error Message (Error)

An error message indicates that the calibration or scaling process was not successful.
After the error message is displayed, the meter reverts to input 2 during calibration or scaling and to input 1 during internal calibration, allowing the appropriate input signal to be applied or programmed.
The error message might be caused by any of the following conditions:

1. Input signal is not connected to the proper terminals or it is connected backwards.
2. Wrong signal selection in Setup menu.
3. Minimum input span requirements not maintained.
4. Input 1 signal inadvertently applied to calibrate input 2.

Minimum Input Span

The minimum input span is the minimum difference between input 1 and input 2 signals required to complete the calibration or scaling of the meter.

Input Range	Input 1 \& Input 2 Span
$4-20 \mathrm{~mA}$	0.15 mA
$\pm 10 \mathrm{VDC}$	0.01 VDC

Calibrating the Meter with External Source

To scale the meter without a signal source, refer to
Scaling the Meter without a Signal Source (5LRL-R,
$5\left[R_{L}-b\right)$, page 33 .
Warm up the meter for at least 15 minutes before performing calibration to ensure specified accuracy.

The meter can be calibrated to display the process variables in engineering units by applying the appropriate input signal and following the calibration procedure.
The use of a calibrated signal source is strongly recommended to calibrate the meter.
Calibrating the Meter for Channel A (LRL-A)

Calibrating the Meter for Channel B (CRL-b)

Total and Grand Total Setup

The time base and total conversion factor, and grand total conversion factor for input channels A and B are located in the Totalizer Setup menu.
The time base is based on the rate of flow. Total \& grand total conversion factors for channel A and B are programmed independently. The total and grand total have their own independent settings. This means that one can be displaying the value in gallons while the other displays in million gallons, liters, m^{3}, etc.

Total \& Grand Total Reset

Total reset menus are located in the Program menu. The totals can be programmed for manual or automatic reset. In the automatic reset mode, a programmable time delay is available to reset the total or grand total after the assigned preset is reached.

Password Protected and Non-Resettable Total
The total and grand total can be password-protected to prevent unauthorized resets. The grand total can be programmed as a non-resettable total, see page 48 for details.

Setting the Display Parameters \& Intensity (d5PLRY)

Display line $1\left(\begin{array}{l}\mathrm{L}, \mathrm{nE} \quad \mathrm{i}) \text { can be programmed to display: }\end{array}\right.$

1. Ch-A rate (d Ch-R)
2. Ch-B rate ($\mathrm{d}_{\mathrm{C}}^{\mathrm{Ch}} \mathrm{C}$)
3. Ch-C math channel (d Ch-C)
4. Toggle Ch-A \& Ch-B rate (d 8b)
5. Toggle Ch-A rate and Ch-C (d RE)
6. Toggle Ch-B rate and Ch-C (d bL)
7. Toggle Ch-A \& Ch-B rate, and Ch-C (d RbL)
8. Ch-A total ($(d t-R$)
9. Ch-B total ($d \quad t-b$)
10. Ch-A grand total (d $u t-R$)
11. Ch-B grand total (d $\mathrm{ct}-\mathrm{b}$)
12. Toggle Ch-A rate and total (d rt-f)
13. Toggle Ch-B rate and total (drt-b)

14. Relay set points (1-8) ($\mathbf{d 5 E t}$ ito d5Et 8)
15. Max, min, and max \& min values for Ch-A, Ch-B, or Ch-C (d H - -R to d $\mathrm{HL}-\mathrm{E}$)
16. Toggle Ch-A rate \& units (d R-u)
17. Toggle Ch-B rate \& units (d $\quad \mathrm{b}$-u)
18. Toggle Ch-C \& units (d [-u)
19. Toggle Ch-A total \& units (d เR-ぃ)
20. Toggle Ch-B total \& units (d tb-u)
21. Toggle Ch-A total and Ch-B total (d t Rb)
22. Toggle Ch-A total, Ch-B total, and the sum of total A and total B (d tRbL).
Notes: The sum of total A and B for $t A B C$ is independent of channel C programming. Channel C may be used normally by a different display selection even when D tABC is selected for one of the two displays.
23. Modbus input (n ר bu5)

Display line $2\binom{\mathrm{~L}, ~ \mathrm{EE}}{\mathrm{C}}$) can be programmed to display:

1. All options for display line 1
2. Off, with no display (d off)
3. Engineering units for any single channel, total, or grand total

Display Intensity: The meter has eight display intensity levels to give the best performance under various lighting conditions. Select intensity 8 for outdoor applications. The default intensity setting is 8 .

After setting up the input and display, press the Menu button to exit programming and skip the rest of the setup menu.

Setting the Relay Operation (rELRY)

This menu is used to set up the assignment and operation of the relays.
During setup, the relays do not follow the input
and they will remain in the state found prior to
entering the Relay menu.

1. Relay assignment
a. Channel A rate, total, or grand total
b. Channel B rate, total, or grand total
c. Channel C (Math channel)
d. Modbus
2. Relay action
a. Automatic reset only (non-latching)
b. Automatic + manual reset at any time (non-latching)
c. Latching (manual reset only)
d. Latching with Clear (manual reset only after alarm condition has cleared)
e. Pump alternation control (automatic reset only)
f. Sampling (the relay is activated for a user-specified time)
g. Off (relay state controlled by Interlock feature)
3. Set point
4. Reset point
5. Fail-safe operation
a. On (enabled)
b. Off (disabled)
6. Time delay
a. On delay (0-999.9 seconds)
b. Off delay (0-999.9 seconds)
7. Relay action for loss (break) of $4-20 \mathrm{~mA}$ input (ignore, on, off)

Setting the Relay Assignment (R55 (ח)

Relays may be assigned to Channel A (rate, total, or grand total), Channel B (rate, total, or grand total), Channel C (Math channel), or Modbus input.

Setting the Relay Action (Rct)

Operation of the relays is programmed in the Action menu. The relays may be set up for any of the following modes of operation:

1. Automatic reset (non-latching)
2. Automatic + manual reset at any time (non-latching)
3. Latching (manual reset only, at any time)
4. Latching with Clear (manual reset only after alarm condition has cleared)
5. Pump alternation control (automatic reset only)
6. Sampling (the relay is activated for a user-specified time)
7. Off (relay state controlled by Interlock feature)

The following graphic shows relay 1 action setup; relay 2-4 are set up in a similar fashion.

Rct

Programming Set and Reset Points

High alarm indication: program set point above reset point. Low alarm indication: program set point below reset point.
The deadband is determined by the difference between set and reset points. Minimum deadband is one display count. If the set and reset points are programmed with the same value, the relay will reset one count below the set point.
Note: Changes are not saved until the reset point has been accepted.

Setting Fail-Safe Operation

In fail-safe mode of operation, the relay coil is energized when the process variable is within safe limits and the relay coil is de-energized when the alarm condition exists. The fail-safe operation is set independently for each relay. Select on to enable or select oFF to disable fail-safe operation.

Programming Time Delay

The On and Off time delays may be programmed for each relay between 0 and 999.9 seconds. The relays will transfer only after the condition has been maintained for the corresponding time delay.
The On time delay is associated with the set point.
The Off time delay is associated with the reset point.

Relay Action for Loss of 4-20 mA Input (Loop Break)

The loop break feature is associated with the 4-20 mA input. Each relay may be programmed to go to one of the following conditions when the meter detects the loss of the input signal (i.e. $<0.005 \mathrm{~mA}$):

1. Turn On (Go to alarm condition)
2. Turn Off (Go to non-alarm condition)
3. Ignore (Processed as a low signal condition)

Note: This is not a true loop break condition; if the signal drops below 0.005 mA , it is interpreted as a "loop break" condition.

Relay and Alarm Operation Diagrams

The following graphs illustrate the operation of the relays, status LEDs, and ACK button.

High Alarm Operation (Set > Reset)

For Manual reset mode, ACK can be pressed anytime to turn "off" relay. To detect a new alarm condition, the signal must go below the set point, and then go above it.

High Alarm with Fail-Safe Operation (Set > Reset)

Note: Relay coil is energized in non-alarm condition. In case of power failure, relay will go to alarm state.

Low Alarm Operation (Set < Reset)

For Manual reset mode, ACK can be pressed anytime to turn "off" relay. For relay to turn back "on", signal must go above set point and then go below it.

Low Alarm with Fail-Safe Operation (Set < Reset)

Note: Relay coil is energized in non-alarm condition. In case of power failure, relay will go to alarm state.

Pump Alternation Control Operation

Relay Sampling Operation

When the signal crosses the set point, the relay trips and the sample time starts. After the sample time has elapsed, the relay resets. The cycle repeats every time the set point is crossed, going up for high alarms and going down for low alarms.
The sample time can be programmed between 0.1 and 5999.9 seconds.

Signal Loss or Loop Break Relay Operation

The following graph shows the loop break relay operation for a high alarm relay.

When the meter detects a break in the $4-20 \mathrm{~mA}$ loop, the relay will go to one of the following selected actions:

1. Turn On (Go to alarm condition)
2. Turn Off (Go to non-alarm condition)
3. Ignore (Processed as a low signal condition)

Time Delay Operation

The following graphs show the operation of the time delay function.

When the signal crosses the set point, the On time delay timer starts and the relay trips when the time delay has elapsed. If the signal drops below the set point (high alarm) before the time delay has elapsed, the On time delay timer resets and the relay does not change state. The same principle applies to the Off time delay.
Note: If "Automatic or Manual ($\mathbf{(R - n \mathbf { n }} \mathbf{R}$)" reset mode is selected, the LED follows the reset point and not the relay state when the relay is acknowledged.

Relay Operation Details

Overview

The relay capabilities of the meter expand its usefulness beyond simple indication to provide users with alarm and control functions. These capabilities include front panel alarm status LEDs as well as either 2 or 4 optional internal relays. Typical applications include high or low temperature, level, pressure or flow alarms, control applications such as simple on/off pump control, and pump alternation control for up to 4 pumps. There are four basic ways the relays can be used:

1. High or Low Alarms with Latching or Non-Latching Relays
2. Simple On/Off Control with 100\% Adjustable Deadband
3. Sampling (Based on Time)
4. Pump Alternation Control for up to 4 Pumps

Relays Auto Initialization

When power is applied to the meter, the front panel LEDs and alarm relays will reflect the state of the input to the meter. The following table indicates how the alarm LEDs and relays will react on power-up based on the set and reset points:

Alarm \#	HI or LO Alarm	Set Point	Reset Point	Power-Up Reading	 LED
1	HI	1000	500	499	Off
2	LO	700	900	499	On
3	LO	250	400	499	Off
4	HI	450	200	499	On

Fail-Safe Operation

The following table indicates how the relays behave based on the fail-safe selection for each relay:
Note: $N O=$ Normally Open, NC = Normally Closed. This refers to the

Fail-Safe Selection	Non-Alarm State		Alarm State		Power Failure
	NO	NC	NO	NC	
Off	Open	Closed	Closed	Open	Relays go to non-alarm state
On	Closed	Open	Open	Closed	Relays go to alarm state

Front Panel LEDs

The LEDs on the front panel provide status indication for the following:
The meter is supplied with four alarm points that include front panel LEDs to indicate alarm conditions. This standard feature is particularly useful for alarm applications that require visualonly indication. The LEDs are controlled by the set and reset points programmed by the user. When the display reaches a set

LED	Status
1	Alarm 1
2	Alarm 2
3	Alarm 3
4	Alarm 4

LED	Status
5	Alarm 5
6	Alarm 6
7	Alarm 7
8	Alarm 8

For non-latching relays, the LED is always off during normal condition and always on during alarm condition, regardless of the state of the relay (e.g. Relay acknowledged after alarm condition).
For latching relays, the alarm LEDs reflects the status of the relays, regardless of the alarm condition. The following tables illustrate how the alarm LEDs function in relation to the relays and the acknowledge button (Default: F3 key assigned to ACK).

Latching and Non-Latching Relay Operation

The relays can be set up for latching (manual reset) or non-latching (automatic reset) operation.

The On and Off terminology does not refer to the status of the relay's coil, which depends on the fail-safe mode selected.

Relay terminology for following tables	
Terminology	Relay Condition
On	Alarm (Tripped)
Off	Normal (Reset)
Ack	Acknowledged

Non-Latching Relay (Ruto)

In this application, the meter is set up for automatic reset (non-latching relay). Acknowledging the alarm while it is still present has no effect on either the LED or the relay. When the alarm finally goes away, the relay automatically resets and the LED also goes off.

In this application, the meter is set up for automatic and manual reset at any time (non-latching relay). The LED and the relay automatically reset when the meter returns to the normal condition.
The next time an alarm occurs, the operator acknowledges the alarm manually while the alarm condition still exists. This causes the relay to reset, but the LED stays on until the meter returns to the normal condition.

Latching Relay (LRtch)

In this application, the meter is set up for manual reset at any time. Acknowledging the alarm even if the alarm condition is still present resets the relay and turns off the LED.

Latching Relay (Lt-[Lr)

In this application, the meter is set up for manual reset only after the signal passes the reset point (alarm condition has cleared). Acknowledging the alarm while it is still present has no effect on either the LED or the relay. When the alarm is acknowledged after it returns to the normal state, the LED and the relay go off. Notice that the LED remains on, even after the meter returns to the normal condition. This is because, for latching relays, the alarm LED reflects the status of the relay, regardless of the alarm condition.

Automatic reset only		
Condition	LED	Relay
Normal	Off	Off
Alarm	On	On
Ack (No effect)	On	On
Normal	Off	Off

Automatic + manual reset at any time		
Condition	LED	Relay
Normal	Off	Off
Alarm	On	On
Normal	Off	Off
Next Alarm	On	On
Ack	On	Off
Normal	Off	Off

Manual reset any time		
Condition	LED	Relay
Normal	Off	Off
Alarm	On	On
Ack	Off	Off

Manual reset only after alarm condition has cleared		
Condition	LED	Relay
Normal	Off	Off
Alarm	On	On
Ack (No effect)	On	On
Normal	On	On
Ack	Off	Off

Acknowledging Relays

There are two ways to acknowledge relays programmed for manual reset:

1. Via the programmable front panel function keys F1-F3 (Default: F3 assigned to ACK).
2. Remotely via a normally open pushbutton wired across one of the digital inputs and the +5 V terminals on the digital I/O modules, or using the F4 digital input, which is triggered with a contact closure to COM, or with an active low signal (see page 20).
When the ACK button or the assigned digital input is closed, all relays programmed for manual reset are acknowledged.

PDA1044 Digital I/O Module

Figure 19. Acknowledge Relays w/Function Key or Digital Input
Pump Alternation Control Applications (RLLErn)
For pump control applications where two or more similar pumps are used to control the level of a tank or a well, it is desirable to have all the pumps operate alternately. This prevents excessive wear and overheating of one pump over the lack of use of the other pumps.
Up to 4 relays can be set up to alternate every time an on/off pump cycle is completed. The set points and reset points can be programmed, so that the first pump on is the first pump off.

Application \#1: Pump Alternation Using Relays 1 \& 2

1. Relays 1 and 2 are set up for pump alternation.
2. Relays 3 and 4 are set up for low and high alarm indication.

Set and Reset Point Programming with Pump Alternation

Relay	Set Point	Reset Point	Function
1	30.000	10.000	Controls pump 1 \& 2
2	35.000	5.000	Sets dual pump trigger
3	4.000	9.000	Controls low alarm
4	40.000	29.000	Controls high alarm

Pump Alternation Operation

1. Pump \#1 turns on when level reaches 30.000 , when level drops below 10.000 pump \#1 turns off.
2. The next time level reaches 30.000 , pump \#2 turns on, when level drops below 10.000 , pump \#2 turns off.
3. If the level doesn't reach 35.000 pump $\# 1$ and pump $\# 2$ will be operating alternately.
4. If pump \#1 cannot keep the level below 35.000 pump \#2 will turn on at 35.000 , then as the level drops to 10.000 pump \#1 turns off, pump \#2 is still running and shuts off below 5.000 .
5. Notice that with the set and reset points of pump \#2 outside the range of pump \#1, the first pump on is the first pump to go off. This is true for up to 4 alternating pumps, if setup accordingly.
6. Relay \#3 will go into alarm if the level drops below 4.000 and relay \#4 will go into alarm if the level exceeds 40.000 .

Setting Up the Interlock Relay (Force On) Feature

Relays 1-4 can be set up as interlock relays. To set up the relays for the interlock feature:

1. Access the Setup - Relay - Action menu and set the action to off.
2. In the Advanced features - User menu program any of the digital inputs to Force On any of the internal relays (1-4).
3. Connect a switch or dry contact between the +5 V terminal and the corresponding digital input (dl- 1 to dl-4) terminal.
Note: If multiple digital inputs are assigned to the same relay, then the corresponding logic is (AND) - i.e. both switches must be closed to trip the relay.

Scaling the 4-20 mA Analog Output (Rout)

The 4-20 mA analog outputs can be scaled to provide a 4-20 mA signal for any display range selected. To select the channel and source assignments the analog outputs are assigned to, see Analog Output Source on page 58.
No equipment is needed to scale the analog outputs; simply program the display values to the corresponding mA output signal.
The Analog Output menu is used to program the 4-20 mA outputs based on display values.

Reset Menu (rE5Et)

The Reset menu is used to reset the maximum (peak) value of $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$ rate ($r 5 \mathrm{Lt} \mathrm{H}_{1}$), minimum (valley) reading of $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$ rate ($r 5 t \mathrm{La}$), both high and low value of $\mathrm{Ch}-\mathrm{A}$ and $\mathrm{Ch}-\mathrm{B}$ rate ($r \mathrm{St}$ Hit), Ch-A total (tot R) or Ch-B total (tot b), Ch-A grand total (Etot R) or Ch-B grand total (Etot b), both Ch-A and Ch-B totals (tot Rb), or both Ch-A and Ch-B grand totals (Et Rb).

Control Menu (ContrL)

The Control menu is used to control the $4-20 \mathrm{~mA}$ analog output (Aout 1 only) and the relays manually, ignoring the input. Each relay and analog output can be programmed independently for manual control. Selecting automatic control sets all relays and analog output for automatic operation.

Setting Up the Password (PR55)

The Password menu is used for programming three levels of security to prevent unauthorized changes to the programmed parameter settings, to restrict the ability to reset the totals and grand totals, and to program the non-resettable totalizer.

Pass 1: Allows use of function keys and digital inputs
Pass 2: Allows use of function keys, digital inputs and editing set/reset points
Pass 3: Restricts all programming, function keys, and digital inputs.
Total: Prevents resetting the total manually
Gtotal: Prevents resetting the grand total manually

Protecting or Locking the Meter Functions

Enter the Password menu and program a six-digit password.
For instructions on how to program numeric values see Setting Numeric Values, page 28.

Total Reset Password \& Non-Resettable Total
The total and the grand total can be password-protected to prevent unauthorized total resets. The grand total can be programmed as a non-resettable total by entering the password "050873".

Once the Grand Total has been programmed as "non-resettable" the feature cannot be disabled.

Making Changes to a Password Protected Meter

If the meter is password protected, the meter will display the message Locd (Locked) when the Menu button is pressed. Press the Enter button while the message is being displayed and enter the correct password to gain access the menu. After exiting the programming mode, the meter returns to its password protected condition.

Disabling Password Protection

To disable the password protection, access the Password menu and enter the correct password twice, as shown below. The meter is now unprotected until a new password is entered.

If the correct six-digit password is entered, the meter displays the message unioc (unlocked) and the protection is disabled until a new password is programmed.
If the password entered is incorrect, the meter displays the message Locd (Locked) for about two seconds, and then it returns to Run Mode. To try again, press Enter while the Locked message is displayed.

Did you forget the password?
The password may be disabled by entering a master password once. If you are authorized to make changes, enter the master password 508655 to unlock the meter.

Advanced Features Menu

To simplify the setup process, functions not needed for most applications are located in the Advanced Features menu.
Press and hold the Menu button for three seconds to access the advanced features of the meter.

Advanced Features Menu \& Display Messages

The following table shows the functions and messages of the Advanced Features menu in the order they appear in the menu.

Display	Parameter	Action/Setting
filtEr	Filter	Set noise filter value
Ch-A	Channel A	Set filter value for channel A
Ch-b	Channel B	Set filter value for channel B
bypASs	Bypass	Set filter bypass value Ch-A Ch-b Channel ASet filter bypass value for channel A
Channel B	Set filter bypass value for channel B	
seriAl	Round	Set the rounding value for display variables
SlaveId	Set serial communication parameters	
Baud	Baud rate	Set slave ID or meter address
Tr dLY	Select baud rate Transmit	Set transmit delay for serial communication
Parity	Parity	Select parity Even, Odd, or None with 1 or 2 stop bits
t-byt	Time byte	Set byte-to-byte timeout

Display	Parameter	Action/Setting
SelEct	Select	Enter the Select menu (function, cutoff, out)
Functn	Signal input conditionin g	Select linear, square root, programmable exponent, or round horizontal tank function
Ch-A	Channel A	Select menu for channel A
Ch-b	Channel B	Select menu for channel B
Linear	Linear	Set meter for linear function and select number of linearization points
Square	Number of points	Set the number of linearization points (default: 2)
Prog E	Programma root ble exponent	Set meter for square root extraction
net meter for		
programmable		
exponent and enter		
exponent value		

ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

Display	Parameter	Action/Setting
Sunm	Sum	$\mathrm{C}=(\mathrm{A}+\mathrm{B}+\mathrm{P})^{*} \mathrm{~F}$
Dif	Difference	$\mathrm{C}=(\mathrm{A}-\mathrm{B}+\mathrm{P})^{*} \mathrm{~F}$
difabs	Absolute difference	$\begin{aligned} & C=((\text { Absolute value } \\ & \text { of }(A-B))+P)^{*} F \end{aligned}$
Avg	Average	$C=\left(\left(\begin{array}{l}\text { a }\end{array}\right.\right.$
nmulti	Multiplicatio n	$C=\left(\left(A^{*} B\right)+P\right)^{*} F$
Divide	Divide	$C=((A / B)+P)^{\star} \mathrm{F}$
$\mathrm{Hi}-\mathrm{ab}$	Max of A or B	$\mathrm{C}=((\mathrm{High}$ value of channel A or B)+P)*F
Lo-ab	$\begin{aligned} & \text { Min of } A \text { or } \\ & B \end{aligned}$	$C=(($ Low value of channel A or B)+P)*F
Drauw	Draw	$C=((A / B)-1)^{*} F$
uw Avg	Weighted avg.	$\mathrm{C}=\left((\mathrm{B}-\mathrm{A})^{*} \mathrm{~F}\right)+\mathrm{A}$
ratio	Ratio	$C=(A / B){ }^{*} F$
Ratio2	Ratio 2	$C=((B-A) / A)+P)^{*} F$
Concen	Concentrati on	$C=(A /(A+B))^{\star} F$
Sunm t	Sum total	$\mathrm{C}=(\mathrm{tA}+\mathrm{tB}+\mathrm{P})^{*} \mathrm{~F}$
Sunmgt	Sum grand total	$C=(G t A+G t B+P)^{*} F$
Dift	Difference of total	$\mathrm{C}=(\mathrm{tA}-\mathrm{tB}+\mathrm{P})^{*} \mathrm{~F}$
Dif gt	Diff. of grand total	$\mathrm{C}=(\mathrm{GtA}-\mathrm{GtB}+\mathrm{P})^{*} \mathrm{~F}$
Tratio	Total ratio	$\mathrm{C}=(\mathrm{t} / \mathrm{A} / \mathrm{B})^{*} \mathrm{~F}$
t-rat2	Total ratio 2	$\mathrm{C}=((\mathrm{tB}-\mathrm{tA}) / \mathrm{t} A)^{*} \mathrm{~F}$
T pct	Total percent	$\mathrm{C}=(\mathrm{t} \mathrm{A} /(\mathrm{t} A+\mathrm{tB}))^{*} 100$
Const	Constant	Enter math equation constants
adder	Adder	Addition constant used in channel C math calculations (P)
factor	Factor	Multiplication constant used in channel C math calculations (F)
CutofF	Cutoff	Set low-flow cutoff
Ch-A	Channel A	Set low-flow cutoff for Channel A
Ch-b	Channel B	Set low-flow cutoff for Channel B
Count	Count	Set total count direction

Display	Parameter	Action/Setting
Ch-A	Channel A	Set total count direction for Channel A
Ch-b	Channel B	Set total count direction for Channel B
Tot C	Total count	Set direction of total count
Gtot C	Grand total count	Set direction of grand total count
up	Count up	Count up
Douwn	Count down	Count down
C strt	Count start	Enter count down start value
AoutPr	Analog output programmi ng	Program analog output parameters
Aout 1*	Analog output 1	Program analog output 1 (*1-3) parameters
Source	Source	Select source for the 4-20 mA output
brERH	Loop break	Set analog output if loop break detected
Calib	Calibrate	Calibrate 4-20 mA output (internal reference source used for scaling the output)
4 nmA	4 mA output	Enter mA output value read by milliamp meter with at least 0.001 mA resolution
20 nmA	20 mA output	Enter mA output value read by milliamp meter with at least 0.001 mA resolution
O-rang	Overrange	Program mA output for display overrange
u-rang	Underrange	Program mA output for display underrange
$n m A x$	Maximum	Program maximum mA output allowed
nmin	Minimum	Program minimum mA output allowed
User	User I/O	Assign function keys and digital I/O

ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

Display	Parameter	Action/Setting
F1*	F1* function key	Assign F1 function key (*F1/F2/F3)
F4	F4 digital input	Assign F4 function (digital input)
dI I	Digital input 1	Assign digital input 1 - 4
dO 1	Digital output 1	Assign digital output 1 -4
ICal	Internal calibration	Enter internal calibration (used for recalibrating the meter with a calibrated signal source)
Ch-A	Channel A	Perform calibration on channel A
Ch-b	Channel B	Perform calibration on channel B
C CAL	Current calibration	Calibrate 4-20 mA current input (internal reference source used for scaling the input)

Display	Parameter	Action/Setting
C lo	Current low	Calibrate low current input (e.g. 4 mA)
C Hi	Current high	Calibrate high current input (e.g. 20 mA)
v CAL	Voltage calibration	Calibrate voltage input
v Lo	Voltage low	Calibrate low voltage input (e.g. 0 V)
v Hi	Voltage high	Calibrate high voltage input (e.g. 10 V)
Diag	Diagnostics	Display parameter settings
LEd t	LED test	Test all LEDs
inFo	Information	Display software and S/N information
ErR5E	Erase	Erase MeterView Pro software stored in meter's memory

Noise Filter (filter)

The noise filter is available for unusually noisy signals that cause an unstable process variable display. The noise filter averages the input signal over a certain period. The filter level determines the length of time over which the signal is averaged. The filter level can be set between 2 and 199. The higher the filter level, the longer the averaging time and so the longer it takes the display to settle to its final value. Setting the filter level to zero disables the filter function.

Noise Filter Bypass (bYPA55)

The noise filter bypass changes the behavior of the meter so that small variations in the signal are filtered out but large abrupt changes in the input signal are displayed immediately. The bypass value determines the minimum amount of signal change to be displayed immediately. All signal changes smaller than the bypass value are filtered or averaged by the meter. The noise filter bypass may be set between 0.1 and 99.9% of full scale.

Rounding Feature (round)

The rounding feature is used to give the user a steadier display with fluctuating signals. Rounding is used in addition to the filter function.
Rounding causes the display to round to the nearest value according to the rounding selected. This setting affects the last two digits, regardless of decimal point position.

Modbus RTU Serial Communications (5Er 1 RL)

The meter is equipped with serial communications capability as a standard feature using Modbus RTU Serial Communication Protocol.
The meter may be connected to a PC for initial configuration via the onboard micro USB connection. For ongoing digital communications with a computer or other data terminal equipment, an RS-232, or RS-485 option is required; see Ordering Information on page 5 for details.

4	Do not connect any equipment other than Precision Digital's expansion modules, cables, or meters to the RJ45 M-LINK connector. Otherwise damage will occur to the equipment and the meter.
Warning!	

Note: More detailed instructions are provided with each optional serial communications adapter. Note:
Refer to the ProVu ${ }^{®}$ Modbus Register Tables located at www.predig.com for details.
When using more than one meter in a multi-drop mode, each meter must be provided with its own unique address. The meter address (Slave ID) may be programmed between 1 and 247. The transmit delay may be set between 0 and 199 ms . The parity can be set to even, odd, or none with 1 or 2 stop bits.

Changes made to the Serial menu are initialized after the MENU key is pressed or after navigating through the t -byte parameter.

Serial Communications Overview

RS-232 and RS-485 are standard interfaces approved by the Electronic Industries Alliance (EIA) for connecting serial devices. In EIA terms, the device (e.g. meter) that connects to the interface is called a Data Communications Equipment (DCE) and the device to which it connects (e.g. the computer) is called a Data Terminal Equipment (DTE).
RS-485 can support multi-point connections per line because it uses lower-impedance drivers and receivers.
Line drivers and receivers are used to exchange data between two or more points (nodes) on a serial communications network. Reliable data communications can be difficult in the presence of induced noise, ground level differences, and other hazards associated with installation of a network. When communicating at high data rates, or over long distances in real world environments, RS-232 is often inadequate. The differential data transmission of RS-485 offers superior performance in most applications. Differential signals can help nullify the effects of ground shifts and induced noise signals that can appear as common mode voltages on a network.
A multi-point network consists of multiple drivers and receivers connected on a single bus, where any point (node) can transmit and/or receive data. RS-485 allows multiple drivers and receivers on the same two-wire or four-wire system. The RS- 485 standard specifies up to 32 drivers and 32 receivers on a single bus, but with the introduction of "automatic" repeaters and high-impedance drivers/receivers, this number can be extended to hundreds of points (nodes) on a network.

The cabling used for an RS-485 serial communications network should always be a high quality cable such as Belden 8162 or Alpha 6203C. A two-wire system requires two twisted pairs, and a four-wire system requires three twisted pairs (the extra twisted pair is needed for the signal ground).
Figure 20 illustrates how to connect a general four-wire network (a four-wire network actually contains 5 wires).

Figure 20: General Four-Wire Network Connection
Figure 21 illustrates how to connect a general two-wire network (a two-wire network actually contains 3 wires). Note that the PDA7485 and PDA8485 have DIP switches that allow for two-wire connections without the need to externally wire the DO to the DI and the /DO to the /DI (see the converter section for complete details).

Figure 21: General Two-Wire Network Connection

Select Menu (5ELEct)

The Select menu is used to select the signal input conditioning function applied to the inputs (linear, square root, or programmable exponent), math function for A \& B, constants, low-flow cutoff, total count direction (up or down from a preset amount), and analog output programming. Multi-point linearization is part of the linear function selection.

Signal Input Conditioning (Functn)

The Function menu is used to select the input-to-output transfer function applied to the input signal: linear, square root, or programmable exponent. Multi-point linearization is part of the linear function selection. Each input channel signal input conditioning function is programmed independently.
Meters are set up at the factory for linear function with 2-point linearization. The linear function provides a display that is linear with respect to the input signal.

Square Root Linearization (59 R $\mathrm{R}_{\mathrm{r}} \mathrm{E}$)

The square root function is used to calculate flow measured with a differential pressure transmitter. The flow rate is proportional to the square root of the differential pressure. Scale the meter so that the low input signal (e.g. 4 mA) is equal to zero flow and the high input signal (e.g. 20 mA) is equal to the maximum flow.

Programmable Exponent Linearization (Pro[E)

The programmable exponent function is used to calculate open-channel flow measured with a level transmitter in weirs and flumes. The flow rate is proportional to the head height. Scale the meter so that the low input signal (e.g. 4 mA) is equal to zero flow and the high input signal (e.g. 20 mA) is equal to the maximum flow. This method works well for all weirs and flumes that have a simple exponent in the flow calculation formula. For weirs and flumes with complex exponents it is necessary to use a strapping table and the 32-point linearization of the meter.

Multi-Point Linearization (Linear)

Meters are set up at the factory for linear function with 2-point linearization. Up to 32 linearization points can be selected for each channel under the linear function. The multi-point linearization can be used to linearize the display for non-linear signals such as those from level transmitters used to measure volume in odd-shaped tanks or to convert level to flow using weirs and flumes with complex exponent.

Note: After Scale is displayed continue pressing the Enter button until the meter completes the scaling of the input and display values.

Math Function (nmath)

The Math menu is used to select the math function that will determine the channel C value. These math functions are a combination of input channels A and B, and will display when channel C is selected in the Display menu.
A and B refer to the rate of channel A and B. tA and tB refer to the totals of channel A and B. GtA and GtB refer to the grand totals of channel A and B. The following math functions are available.

Function	Display	Description
Sunm	Sum	$C=(A+B+P)^{*} F$
Dif	Difference	$\mathrm{C}=(\mathrm{A}-\mathrm{B}+\mathrm{P})^{*} \mathrm{~F}$
difabs	Absolute difference	$C=((\text { Absolute value of }(A-B))+P)^{*} F$
Avg	Average	$\mathrm{C}=(((\mathrm{A}+\mathrm{B}) / 2)+\mathrm{P})^{*} \mathrm{~F}$
nmulti	Multiplication	$\mathrm{C}=\left(\left(\mathrm{A}^{*} \mathrm{~B}\right)+\mathrm{P}\right)^{*} \mathrm{~F}$
Divide	Divide	$\mathrm{C}=((\mathrm{A} / \mathrm{B})+\mathrm{P})^{*} \mathrm{~F}$
Hi-ab	Max of A or B	$\mathrm{C}=((\text { High value of channel } \mathrm{A} \text { or } \mathrm{B})+\mathrm{P})^{*} \mathrm{~F}$
Lo-ab	Min of A or B	$\mathrm{C}=((\text { Low value of channel } \mathrm{A} \text { or } \mathrm{B})+\mathrm{P})^{\star} \mathrm{F}$
Drauw	Draw	$\mathrm{C}=((\mathrm{A} / \mathrm{B})-1)^{*} \mathrm{~F}$
uw Avg	Weighted avg.	$\mathrm{C}=\left((\mathrm{B}-\mathrm{A})^{*} \mathrm{~F}\right)+\mathrm{A}$
ratio	Ratio	$C=(A / B)^{*} F$
Ratio2	Ratio 2	$\mathrm{C}=((\mathrm{B}-\mathrm{A}) / \mathrm{A})+\mathrm{P}^{*} \mathrm{~F}$
Concen	Concentration	$C=(A /(A+B))^{*} F$
Sunm t	Sum total	$\mathrm{C}=(\mathrm{tA}+\mathrm{tB}+\mathrm{P})^{*} \mathrm{~F}$
Sunmgt	Sum grand total	$C=(G t A+G t B+P) * F$
Dift	Difference of total	$\mathrm{C}=(\mathrm{t} A-\mathrm{tB}+\mathrm{P})^{*} \mathrm{~F}$
Difgt	Diff. of grand total	$\mathrm{C}=(\mathrm{GtA}-\mathrm{GtB}+\mathrm{P})^{*} \mathrm{~F}$
Tratio	Total ratio	$\mathrm{C}=(\mathrm{t} A / \mathrm{tB})^{*} \mathrm{~F}$
t-rat2	Total ratio 2	$\mathrm{C}=((\mathrm{tB}-\mathrm{t} A) / \mathrm{t} A)^{*} \mathrm{~F}$
T pct	Total percent	$\mathrm{C}=(\mathrm{tA} /(\mathrm{t} A+\mathrm{tB}))^{*} 100$

Math Constants (ConSt)

The Math Constants menu is used to set the constants used in channel C math. The math functions include adder constant P, and factor constant F.
The Adder constant (P) may be set from -99.999 to 999.999.
The Factor constant (F) may be set from 0.001 to 999.999.
The chart on page 55 details the math functions that may be selected in the Math Function menu.

Low-Flow Cutoff (LutoFF)

The low-flow cutoff feature allows the meter to be programmed so that the often-unsteady output from a differential pressure transmitter, at low flow rates, always displays zero on the meter. The low-flow cutoff for each channel is programmed independently.
The cutoff value may be programmed from 0 to 999999 . The meter will display zero below the cutoff value. Programming the cutoff value to zero disables the cutoff feature.

Totalizer Count Up/Down (Count)

The totalizer count up/down menu may be used to program the total and grand total to either count up from 0 when reset or count down from a programmed value when reset. Total and grand total may have their countdown numbers programmed individually from 0 to 999999.

Analog Output Programming (RoutPr)

The Analog Output Programming menu is used to program the behavior of the 4-20 mA output. The following parameters and functions are programmed in this menu:

1. Source: Source for generating the $4-20 \mathrm{~mA}$ output
2. Overrange: Analog output value with display in overrange condition
3. Underrange: Analog output value with display in underrange condition
4. Break: Analog output value when loop break is detected
5. Max: Maximum analog output value allowed regardless of input
6. Min: Minimum analog output value allowed regardless of input

Analog Output Source

The analog output source can be based on either of the input channel rate, total, or grand totals (Ch-A, $\mathrm{Ch}-\mathrm{B}$), the math channel (Ch-C), maximum stored value of either input channel ($\mathrm{Hi}-\mathrm{A}, \mathrm{Hi}-\mathrm{B}$), minimum stored value of either input channel (Lo-A, Lo-B), relay set points, or the Modbus input.

To base an analog output on the rate, total, or grand total of channels A or B, select the channel in the Analog Output Source menu. Then select the rate, total, or grand total as the source reference for the output, and program the output scale.

Programmable Function Keys User Menu (uSEr)

The User menu allows the user to assign the front panel function keys F1, F2, F3, F4 (digital input) and up to eight digital inputs to access most of the menus or to activate functions immediately (e.g. Reset max \& min). F4 is a digital input on the signal input connector. Up to eight digital outputs can be assigned to a number of actions and functions executed by the meter (e.g. Alarms, relay acknowledgement, etc.).
Please refer to the table below, which continues on the following page.

Function Keys \& Digital I/O Available Settings
Refer to the following table for descriptions of each available function key or digital I/O setting.

Display	Description
rst H,	Reset the stored maximum display values for all channels
r5t Lo	Reset the stored minimum display values for all channels
-5t HL	Reset the stored maximum \& minimum display values for all channels
reLRy	Directly access the relay menu
5Et **	Directly access the set point menu for relay 1 (*through 8)
rLS d	Disable all relays until a button assigned to enable relays ($\boldsymbol{r L Y} \mathbf{E}$) is pressed
rLy	Enable all relays to function as they have been programmed
3 HoLd	Hold current relay states and analog output as they are until a button assigned to enable relays (rLY E) is pressed
d HoLd	Hold the current display value, relay states, and analog output momentarily while the function key or digital input is active. The process value will continue to be calculated in the background.
d 8 BL	Scrolls values for A, B \& C when activated. Keeps the last value for 10 seconds and then it returns to its assignment. Values are displayed on display line 1 and the corresponding channel and units on display line 2.
d tot	Scrolls through totals for channels A, B, and C (which is the sum of A and B). Values are displayed on display line 1.
d utot	Scrolls through grand totals for channels A, B, and C (which is the sum of A and B). Values are displayed on display line 1.
Lni H_{1}	Display maximum channel A display value on line 1
Lni Lo	Display minimum channel A display value on line 1
Lni HL	Display maximum \& minimum channel A display values on line 1
Ln2 H_{1}	Display maximum channel B display value on line 2

Display	Description
Lne Lo	Display minimum Channel B display value on line 2
Lne HL	Display maximum \& minimum channel B display values on line 2
Lnc HE	Display minimum channel C display value on line 2
Ln己 HE	Display maximum \& minimum channel C display values on line 2
L LHHE	Display maximum channel C display value on line 2
En 1*	Force relay 1 (*through 4) into the on state. This function is used in conjunction with a digital input to achieve interlock functionality. See page 46 for details about interlock relays.
Contri	Directly access the control menu
d.58b	Disable the selected function key or digital I/O
up-d $\frac{1}{}$	Total count mode direction control for channel A
up-d b	Total count mode direction control for channel B
Rich	Acknowledge all active relays that are in a manual operation mode such as auto-manual or latching
re5Et	Directly access the reset menu
r $5 t \mathrm{t}$	Reset totals for all channels
r5t ut	Reset grand totals for all channels
r5t th	Reset total for channel A
r5t [R	Reset grand total for channel A
r $5 t$ tb	Reset total for channel B
r5t [ib	Reset grand total for channel B
MEnu	Mimic the menu button functionality (digital inputs only)
r SHL	Mimic the right arrow/F1 button functionality (digital inputs only)
\sim^{9}	Mimic the up arrow/F2 button functionality (digital inputs only)
EntEr	Mimic the enter/F3 button functionality (digital inputs only)
RLの ${ }^{\text {P* }}$	Provide indication when alarm 1 (*through 8) has been triggered (digital outputs only)

Internal Calibration (ILRL)

The meter is factory calibrated prior to shipment to read in milliamps and volts depending on the input selection. The calibration equipment is traceable to NIST standards.

The use of calibrated signal sources is necessary to perform the internal calibration of the meter. Check calibration of the meter at least every 12 months. Each input and input type must be recalibrated separately.
Notes:

1. If meter is in operation and it is intended to accept only one input type (e.g. $4-20 \mathrm{~mA}$), recalibration of other input is not necessary.
2. Allow the meter to warm up for at least 15 minutes before performing the internal calibration procedure.
The Internal calibration menu is part of the Advanced Features menu.
3. Press and hold the Menu button for three seconds to access the advanced features of the meter.
4. Press the Up arrow button to scroll to the Internal calibration menu (ILFL) and press Enter.
5. Select channel A ($5 h-R$) or channel $B(5 h-6)$ and press enter.
6. The meter displays either current calibration ($[$ [RL) or voltage calibration ($(\dot{U}[R L$), according to the input setup. Press Enter to start the calibration process.
Example of Internal Calibration for current input:
7. The meter displays low input current message ($\overline{\mathrm{L}} \mathrm{L}$). Apply the low input signal and press Enter. The display flashes for a moment while the meter is accepting the low input signal.
8. After the display stops flashing, a number is displayed with the leftmost digit brighter than the rest. The bright digit is the active digit that can be changed by pressing the Up arrow button. Press the Right arrow button to move to the next digit.
9. Set the display value to correspond to the input signal being calibrated, typically 4.000 mA .
10. The display moves to the high input calibration (5 H1). Apply the high input signal and press Enter.
11. Set the display for the high input calibration, in the same way as it was set for the low
 input calibration, typically 20.000 mA .
The graphic above shows the calibration of the current input. The voltage input is calibrated in a similar way.
Tips:

- Low and high input signals can be any valid values within the range of the meter.
- Observe minimum input span requirements between input 1 and input 2.
- Low input should be less than high input signal.

Error Message (Error)
An error message indicates that the calibration or scaling process was not successful.
After the error message is displayed, the meter reverts to input 2 during calibration or scaling and to input 1 during internal calibration, allowing the appropriate input signal to be applied or programmed.
The error message might be caused by any of the following conditions:

1. Input signal is not connected to the proper terminals, or it is connected backwards.
2. Wrong signal selection in Setup menu.
3. Minimum input span requirements not maintained.

Minimum Input Span

The minimum input span is the minimum difference between input 1 and input 2 signals required to complete the calibration or scaling of

Input Range	$\operatorname{Inp} 1 \& \operatorname{Inp} 2$ Span
$4-20 \mathrm{~mA}$	0.15 mA
$\pm 10 \mathrm{VDC}$	0.01 VDC

Meter Operation

The meter is capable of accepting two input channels (A and B) of either current ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$) or voltage signals ($0-5 \mathrm{~V}, 1-5 \mathrm{~V}, 0-10 \mathrm{~V}, \pm 10 \mathrm{~V}$) and displaying these signals in engineering units from -99999 to 999999 (e.g. a 4-20 mA signal could be displayed as -50.000 to 50.000). A totalizer can be programmed to count the scaled engineering units, interpreting it as count per second, minute, hour, or day. The scaled rate and total for each channel can be displayed on the top or bottom displays.
A math function channel (C) is available to perform operations on channel A and B rates or totals, with adder and factor constants, and display the results. Engineering units or tags may be displayed with these three channels.
The dual-line display can be customized by the user. Typically, display line 1 is used to display the math channel C, while line 2 is used to alternate between displaying input channels A and B rate or total.
Additionally, the meter can be set up to display any input or math channel on line 1 and a unit or tag on line 2. The relays and analog output can be programmed to operate based on any input or math channel.

Front Buttons Operation

Button Symbol	Description
	Press to enter or exit Programming Mode, view settings, or exit max/min readings
(\%1) ${ }^{\square}$	Press to reset max/min readings or other parameter/function assigned through the User menu
	Press to display max/min readings for channel A or other parameter/function assigned through the User menu
or	Press to acknowledge relays or other parameters/function assigned through the User menu

SafeTouch ${ }^{\circledR}$ Buttons

The ProtEX-MAX is equipped with four sensors that operate as through-glass buttons so that it can be programmed and operated without removing the cover (and exposing the electronics) in a hazardous area.
These buttons can be disabled for security by selecting DISABLE on the switch labeled NO-CONTACT BUTTONS located on the connector board.
To actuate a button, press one finger to the glass directly over the marked button area. Then retract finger more than three inches from the glass before pressing the next button. When the cover is removed, the four mechanical buttons located next to the sensors are used. The sensors are disabled when a mechanical button is pressed and will automatically be re-enabled after 60 seconds of inactivity.
The SafeTouch Buttons are designed to filter normal levels of ambient interference and to protect against false triggering, however, it is recommended that the SafeTouch Buttons be disabled (slide switch to LOCK) if there is an infrared interference source in line-of-sight to the display.
The SafeTouch Buttons are configured by default to duplicate the function of the front panel mechanical pushbuttons associated with the integrated meter. The symbols by each SafeTouch button correspond to a mechanical button as shown in the above table.

SafeTouch Button Tips:

- To the extent possible, install the display facing away from sunlight, windows, reflective objects and any sources of infrared interference.
- Keep the glass window clean.
- Tighten the cover securely.

Take caution when cleaning the window glass as it may result in unintentional SafeTouch button events. Only clean the ProtEX-MAX when the system is safely shut down, and inspect the ProtEX-MAX for proper configuration prior to system restart.

- Use a password to prevent tampering.

F4 Operation

A digital input, F4, is standard on the meter. This digital input is programmed identically to function keys F1, F2, and F3. The input is triggered with a contact closure to COM, or with an active low signal. During operation, F4 operates according to the way is has been programmed in the Advanced Features - User menu.

Maximum/Minimum Readings

The max \& min readings (peak \& valley) reached by the process can be displayed either continuously or momentary:

1. Display briefly by assigning to the F1-F3 function keys or to the digital inputs in the User menu.
2. Display continuously by assigning either display to max/min through the Display menu.

Any of the F1-F3 function keys (buttons) and the digital inputs can be programmed to reset the max \& min readings. The meters are set at the factory to display the max/min reading by pressing the Up arrow/F2 button and to use the Right arrow/F1 button to reset the max/min.

To display max and min channel A reading using function key with factory defaults:

1. Press Up arrow/F2 button to display minimum reading of channel A since the last reset/power-up. The display will then display the maximum reading of channel A since the last reset/power-up.
2. To reset max/min press Right arrow/F1 button. The max \& min displays are reset to actual values.
3. Press Menu to exit max/min display reading.

Troubleshooting

The rugged design and the user-friendly interface of the meter should make it unusual for the installer or operator to refer to this section of the manual. However, due to the many features and functions of the meter, it's possible that the setup of the meter does not agree with what an operator expects to see. If the meter is not working as expected, refer to the Diagnostics menu and recommendations below.

Diagnostics Menu (d $\mathrm{R}[$)

The Diagnostics menu is located in the Advanced Features menu. To access the Diagnostics menu, see Advanced Features Menu, page 49.
This menu allows the user to test the functionality of all the meter LEDs, check the meter's software and version information, and erase the MeterView Pro software installation files from the meter. Press the Enter button to view the settings and the Menu button to exit at any time.
For a description of the diagnostic messages, see Advanced Features Menu \& Display Messages, page 49.

Determining Software Version

To determine the software version of a meter:

1. Go to the Diagnostics menu (d, d 5$)$ and press Enter button.
2. Press Up arrow button and scroll to Information menu (info).
3. Press Enter to access the software number (5Ft) and version (iEFr) information. Write down the information as it is displayed. Continue pressing Enter until all the information is displayed.
4. The meter returns to Run Mode after displaying all the settings.

Reset Meter to Factory Defaults

When the parameters have been changed in a way that is difficult to determine what's happening, it might be better to start the setup process from the factory defaults.

Instructions to load factory defaults:

1. Enter the Advanced Features menu. See Advanced Features Menu, page 49.
2. Press Up arrow to go to Diagnostics menu
3. Press and hold Right arrow for three seconds, press

Enter when display flashes rE5Et.
Note: If Enter is not pressed within three seconds, the display returns to Run Mode.
4. The meter goes through an initialization sequence (similar as on power-up), and loads the factory default settings.

ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

Factory Defaults \& User Settings

The following table shows the factory setting for most of the programmable parameters on the meter.

Parameter	Display	Default Setting	Parameter	Display	Default Setting
Input type	inPut		Grand total conversion	Ut [F	1.000
Input type, channel A	Ch-R	4-20 mA	factor, Ch-		
Input type, channel B	[h-b	4-20 mA	Time base, channel B	EbR5E	Sec
Total, channel A	[h-R	Yes	Total conversion factor, Ch-B	$t[F$	1.000
Total, channel B	Ch-b	Yes	Grand total conversion	Ut [F	1.000
Units	un its		factor, Ch-B		
Rate unit, channel A	[h-R	mA-A	Total reset	trE5Et	
Rate unit, channel B	Ch-b	mA-b	Total reset, channel A	$t r 5 t$	Manual
Unit, channel C	[h-L	mA-C	Grand total reset, Ch-A	ut r 5t	Manual
Total unit, channel A	tot-8	tot-A	Total reset, channel B	$t r 5 t$	Manual
Grand total unit, ch-A	Cutot-R	Gtot-A	Grand total reset, Ch-B	ut r $5 t$	Manual
Total unit, channel B	tot-b	tot-b	Display assignment	d5PLRy	
Grand total unit, ch-B	Ctot-b	Gtot-B	Display line 1	d Ch-R	Channel A
Decimal Point	dEc Pt		Display line 2	d Ch-b	Channel B
Rate, channel A	rite	3	Display intensity	d-inty	8
Total, channel A	totil	1	Relay	relay	
Grand total, channel A	Utotril	0	Relay 1 assignment	[h-R	Channel A total
Rate, channel B	rite	3	Relay 1 action	Rct 1	Automatic
Total, channel B	totil	1	Relay 1 set point	5Et i	100.0
Grand total, channel B	UtotRil	0	Relay 2 assignment	[h-R	Channel A total
Channel C	[h-L	3	Relay 2 action	Rat 2	Automatic
Number of points	no Pt5		Relay 2 set point	5Et 己	200.0
Number of points, ch A	[h-R	2	Relay 3 assignment	Ch-R	Channel A rate
Number of points, ch B	[h-b	2	Relay 3 action	Rct 3	Automatic
Scaling, (channel A)	Schit 8		Relay 3 set point	5Et 3	3.000
Input 1, channel A	inP i	4.000 mA	Relay 3 reset point	r5t 3	2.500
Display 1, channel A	d, 1	4.000	Relay 4 assignment	[h-R	Channel A rate
Input 2, channel A	inp 2	20.000 mA	Relay 4 action	Ret 4	Automatic
Display 2, channel A	d 52	20.000	Relay 4 set point	5Et 4	4.000
Scaling (channel B)	$5 c$ 足 b		Relay 4 reset point	r5t 4	3.500
Input 1, channel B	inp i	4.000 mA	Fail-safe relay 1 to 4	FL5	Off
Display 1, channel B	d, 1	4.000	On delay relay 1 to 4	On 1	0.0 sec
Input 2, channel B	inp 2	20.000 mA	Off delay relay 1 to 4	OFF i	0.0 sec
Display 2, channel B	d.5 2	20.000	Loop break relay 1 to 4	LumarE	Ignore
Total setup	t5Etup		Analog output	Rout	
Time base, channel A	tbrise	Sec	Display 1 analog out	d.5 1	4.000
Total conversion factor, Ch-A	t [F	1.000	Output 1 value	But i	4.000 mA
			Display 2 analog out	d.5 2	20.000

ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

Parameter	Display	Default Setting	Parameter	Display	Default Setting
Output 2 value	Sut ?	20.000 mA	Factor (constant F)	FRictor	1.000
Source analog output	Source	Channel A	User	uSEr	
Overrange output	0 -rRniu	21.000 mA	F1 function key	Fi	Reset max \& min
Underrange output	u-rRnEu	3.000 mA			
Loop break output	brERH	3.000 mA	F2 function key	F2	Line 1 Max \& Min
Maximum output		23.000 mA	F3 function key	$F 3$	Acknowledge relays
Minimum output	חו	3.000 mA			
Filter	FitEEr		F4 function (digital input)	$F 4$	Acknowledge relays
Filter, channel A	Ch-R	70			
Filter, channel B	Ch-b	70	Digital input 1	di 1	Menu
Bypass, channel A	b4PR55	0.2	Digital input 2	di 2	Right arrow
Bypass, channel B	b4PR55	0.2	Digital input 3	d 3	Up arrow
Round	round	1	Digital input 4	di 4	Enter
Cutoff	CutofF		Digital output 1	d0 1	Alarm 1
Cutoff value, channel	-h-R	0.000 (disabled)	Digital output 2	d0 2	Alarm 2
A		. 000 (disabled)	Digital output 3	d0 3	Alarm 3
Cutoff value, channel B	[h-b	0.000 (disabled)	Digital output 4	d0 4	Alarm 4
Serial	$5 E r$ Pi		Password	PR55	
Serial	Ser int		Password 1		000000
Slave ID (Address)	Stitid id	247		P955	(unlocked)
Baud rate	brud	9600	Password 2	P955 3	000000
Transmit delay	tr duy	50 ms		2	(unlocked)
Parity	PRr ity	Even	Password 3	P955 3	000000 (unlocked)
Byte-to-byte timeout	$t-63 t$	010 (0.1 sec)	Total		
Math	\% 9th		Tota	totril	(unlocked)
Math, channel C	Sunา	Sum	Grand total	Utotril	000000 (unlocked)
Adder (constant P)	Roder	0.000			

Troubleshooting Tips

Symptom	Check/Action
No display at all	Check power at power connector
SafeTouch buttons do not respond	If mechanical button was pushed. The SafeTouch buttons will be re-enabled automatically 60 seconds after the last button push. If slide switch on connector board is in DISABLE position, switch to ENABLE. Strong direct sunlight may interfere with SafeTouch button operation. It is recommended to operate the buttons by standing so as to block direct sunlight.
Serial Communications Power LED Indicator is off	1. Check modular cable connection Check power to the device

ProtEX-MAX PD8-6262 Explosion-Proof Dual Analog Input Rate/Totalizer Instruction Manual

Symptom	Check/Action
If only the TX (or DATA IN) data status LED is flashing when serial communications attempted	1. Check serial cable 2. Check protocol selected on device 3. Check instrument address \& baud rate Check program address \& baud rate
If both data status LEDs (TX and $R X$) are off when trying to communicate	Remove all unnecessary cables and instruments from the bus. Try getting the system to work with only one device (to ease troubleshooting) and then expand the system one device at a time.
Communications slow	Increase the baud rate
Random communication errors	1. Increase the TX delay time Decrease the baud rate
Power LED is off	1. Check modular cable connection Check power to instrument
Not able to change setup or programming, Locd is displayed	Meter is password-protected, enter correct six-digit password to unlock
Meter displays error message during calibration (Error)	Check: 1. Signal connections 2. Input selected in Setup menu 3. Minimum input span requirements
Meter displays 1. 999999 2. -99999	Check: 1. Input selected in Setup menu 2. Corresponding signal at Signal connector
Display is unstable	Check: 1. Input signal stability and value 2. Display scaling vs. input signal 3. Filter and bypass values (increase)
Display response is too slow	Check filter and bypass values
Display reading is not accurate	Check: 1. Signal input conditioner selected: Linear, square root, etc. 2. Scaling or calibration
Display does not respond to input changes, reading a fixed number	Check: 1. Display assignment, it might be displaying max, min, or set point.
Display alternates between 1. H, and a number 2. Lo and a number	Press Menu to exit max/min display readings.
Relay operation is reversed	Check: 1. Fail-safe in Setup menu 2. Wiring of relay contacts
Relay and status LED do not respond to signal	Check: 1. Relay action in Setup menu 2. Set and reset points
Flashing relay status LEDs	Relays in manual control mode or relay interlock switches opened.
Meter not communicating with application programs	Check: 1. Serial adapter and cable 2. Serial settings 3. Meter address and baud rate
If the display locks up or the meter does not respond at all	Cycle the power to reboot the microprocessor.
Other symptoms not described above	Call Technical Support for assistance.

Service

 WARNINGS

- Installation and service should be performed only by trained service personnel. Service requiring replacement of internal sub-components must be performed at the factory.
- Disconnect from supply before opening enclosure. Keep cover tight while circuits are alive. Conduit seals must be installed within 18" (450 mm) of the enclosure.
- Verify that the operating atmosphere of the instrument is consistent with the appropriate hazardous locations certifications.
- If the instrument is installed in a high voltage environment and a fault or installation error occurs, high voltage may be present on any lead
- Read all product labels completely and follow all instructions and requirements listed on the labels for installation or service.

If the enclosure is sound and undamaged, then only the internal electronics housing will need to be returned to the factory for service. Contact the factory for RMA number and return instructions.

Mounting Dimensions

All units: inches (mm)
$\varnothing 0.33(\varnothing 8.4)$

Figure 22: Enclosure Dimensions - Front View

Figure 23: Enclosure Dimensions - Side Cross Section View

EU Declaration of Conformity

Issued in accordance with ISO/IEC 17050-1:2004 and ATEX Directive 2014/34/EU.
We,

Precision Digital Corporation

233 South Street
Hopkinton, MA 01748 USA
as the manufacturer, declare under our sole responsibility that the product(s),

Model PD8 ProtEX-MAX Series

to which this declaration relates, is in conformity with the European Union Directives shown below:

```
2014/35/EU Low Voltage Directive
2014/34/EU ATEX Directive
2014/30/EU EMC Directive
2011/65/EU RoHS Directive
```

This conformity is based on compliance with the application of harmonized or applicable technical standards and, when applicable or required, a European Union notified body certification.
Standards:

EN 55022:2007	EN 61000-6-2:2005	EN 60079-0:2009	EN 61000-6-4:2007
EN 60079-1:2007	EN 61010-1:2001	EN 60079-31:2008	EN 61326:2006

The standards EN 55022:2007, EN 60079-0:2009, EN 60079-1:2007, EN 60079-31:2008, EN 61000-64:2007, EN 61010-1:2001, and EN 61326:2006 are no longer harmonized. The requirements of these standards have been checked against the harmonized standard EN 55022:2010, EN 60079$0: 2012+\mathrm{A} 11: 2013$, EN 60079-1:2014, EN 60079-31:2014, EN 61000-6-4:2007+A1:2011, EN 610101:2010, and EN 61326:2013 and there were no major technical changes affecting the latest technical knowledge for the products listed above.
EC Type Examination Certificate: Sira 12ATEX1182
Product Markings:
II 2 G D
Ex d IIC T* Gb
Ex tb IIIC T90 ${ }^{\circ} \mathrm{C}$ Db IP68
Tamb $=-40^{\circ} \mathrm{C}$ to $+^{* \circ} \mathrm{C}\left({ }^{*} \mathrm{~T} 5=65^{\circ} \mathrm{C},{ }^{*} \mathrm{~T} 6=60^{\circ} \mathrm{C}\right)$
ATEX Notified Body for EC Type Examination Certificate:
Sira Certification Service, NB 0518 Unit 6, Hawarden Industrial Park Hawarden, Deeside, CH5 3US, UK

ATEX Quality Assurance Notification No.: SIRA 10 ATEX M462

ATEX Notified Body for Quality Assurance: Sira Certification Service, NB 0518
Unit 6, Hawarden Industrial Park Hawarden, Deeside, CH5 3US, UK
Signed for and on behalf of Precision Digital Corporation:

Name:
Company: Precision Digital Corporation
Title: President
Date: $\quad 02 / 12 / 2018$

Document No: DoC PD8 \{021218\}

How to Contact Precision Digital

- For Technical Support, please

Call: (800) 610-5239 or (508) 655-7300
Fax: (508) 655-8990
Email: support@predig.com

- For Sales Support or to place an order, please contact your local distributor or
Call: (800) 343-1001 or (508) 655-7300
Fax: (508) 655-8990
Email: sales@predig.com
- For the latest version of this manual, please visit www.predig.com

